Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqelssd.1 | |- ( ph -> A C_ B ) |
|
eqelssd.2 | |- ( ( ph /\ x e. B ) -> x e. A ) |
||
Assertion | eqelssd | |- ( ph -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqelssd.1 | |- ( ph -> A C_ B ) |
|
2 | eqelssd.2 | |- ( ( ph /\ x e. B ) -> x e. A ) |
|
3 | 2 | ex | |- ( ph -> ( x e. B -> x e. A ) ) |
4 | 3 | ssrdv | |- ( ph -> B C_ A ) |
5 | 1 4 | eqssd | |- ( ph -> A = B ) |