Metamath Proof Explorer


Theorem eqelssd

Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022)

Ref Expression
Hypotheses eqelssd.1
|- ( ph -> A C_ B )
eqelssd.2
|- ( ( ph /\ x e. B ) -> x e. A )
Assertion eqelssd
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 eqelssd.1
 |-  ( ph -> A C_ B )
2 eqelssd.2
 |-  ( ( ph /\ x e. B ) -> x e. A )
3 2 ex
 |-  ( ph -> ( x e. B -> x e. A ) )
4 3 ssrdv
 |-  ( ph -> B C_ A )
5 1 4 eqssd
 |-  ( ph -> A = B )