Metamath Proof Explorer


Theorem eqelssd

Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022)

Ref Expression
Hypotheses eqelssd.1 ( 𝜑𝐴𝐵 )
eqelssd.2 ( ( 𝜑𝑥𝐵 ) → 𝑥𝐴 )
Assertion eqelssd ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 eqelssd.1 ( 𝜑𝐴𝐵 )
2 eqelssd.2 ( ( 𝜑𝑥𝐵 ) → 𝑥𝐴 )
3 2 ex ( 𝜑 → ( 𝑥𝐵𝑥𝐴 ) )
4 3 ssrdv ( 𝜑𝐵𝐴 )
5 1 4 eqssd ( 𝜑𝐴 = 𝐵 )