Metamath Proof Explorer
Description: Equality deduction from subclass relationship and membership.
(Contributed by AV, 21-Aug-2022)
|
|
Ref |
Expression |
|
Hypotheses |
eqelssd.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
|
|
eqelssd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
|
Assertion |
eqelssd |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqelssd.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
2 |
|
eqelssd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
3 |
2
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) ) |
4 |
3
|
ssrdv |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
5 |
1 4
|
eqssd |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |