Metamath Proof Explorer
		
		
		
		Description:  Equality deduction from subclass relationship and membership.
       (Contributed by AV, 21-Aug-2022)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | eqelssd.1 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
					
						|  |  | eqelssd.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐴 ) | 
				
					|  | Assertion | eqelssd | ⊢  ( 𝜑  →  𝐴  =  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqelssd.1 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 2 |  | eqelssd.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐴 ) | 
						
							| 3 | 2 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝐴 ) ) | 
						
							| 4 | 3 | ssrdv | ⊢ ( 𝜑  →  𝐵  ⊆  𝐴 ) | 
						
							| 5 | 1 4 | eqssd | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) |