| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxmetfi.1 |  |-  D = ( dist ` ( RR^ ` I ) ) | 
						
							| 2 |  | eqid |  |-  { h e. ( RR ^m I ) | h finSupp 0 } = { h e. ( RR ^m I ) | h finSupp 0 } | 
						
							| 3 | 2 1 | rrxmet |  |-  ( I e. Fin -> D e. ( Met ` { h e. ( RR ^m I ) | h finSupp 0 } ) ) | 
						
							| 4 |  | eqid |  |-  ( RR^ ` I ) = ( RR^ ` I ) | 
						
							| 5 |  | eqid |  |-  ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) | 
						
							| 6 | 4 5 | rrxbase |  |-  ( I e. Fin -> ( Base ` ( RR^ ` I ) ) = { h e. ( RR ^m I ) | h finSupp 0 } ) | 
						
							| 7 |  | id |  |-  ( I e. Fin -> I e. Fin ) | 
						
							| 8 | 7 4 5 | rrxbasefi |  |-  ( I e. Fin -> ( Base ` ( RR^ ` I ) ) = ( RR ^m I ) ) | 
						
							| 9 | 6 8 | eqtr3d |  |-  ( I e. Fin -> { h e. ( RR ^m I ) | h finSupp 0 } = ( RR ^m I ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( I e. Fin -> ( Met ` { h e. ( RR ^m I ) | h finSupp 0 } ) = ( Met ` ( RR ^m I ) ) ) | 
						
							| 11 | 3 10 | eleqtrd |  |-  ( I e. Fin -> D e. ( Met ` ( RR ^m I ) ) ) |