| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxmval.1 |  |-  X = { h e. ( RR ^m I ) | h finSupp 0 } | 
						
							| 2 |  | rrxmval.d |  |-  D = ( dist ` ( RR^ ` I ) ) | 
						
							| 3 |  | simprl |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> x e. X ) | 
						
							| 4 | 1 3 | rrxfsupp |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( x supp 0 ) e. Fin ) | 
						
							| 5 |  | simprr |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> y e. X ) | 
						
							| 6 | 1 5 | rrxfsupp |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( y supp 0 ) e. Fin ) | 
						
							| 7 |  | unfi |  |-  ( ( ( x supp 0 ) e. Fin /\ ( y supp 0 ) e. Fin ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) e. Fin ) | 
						
							| 8 | 4 6 7 | syl2anc |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) e. Fin ) | 
						
							| 9 | 1 3 | rrxsuppss |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( x supp 0 ) C_ I ) | 
						
							| 10 | 1 5 | rrxsuppss |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( y supp 0 ) C_ I ) | 
						
							| 11 | 9 10 | unssd |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) C_ I ) | 
						
							| 12 | 11 | sselda |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ) -> k e. I ) | 
						
							| 13 | 1 3 | rrxf |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> x : I --> RR ) | 
						
							| 14 | 13 | ffvelcdmda |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( x ` k ) e. RR ) | 
						
							| 15 | 1 5 | rrxf |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> y : I --> RR ) | 
						
							| 16 | 15 | ffvelcdmda |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( y ` k ) e. RR ) | 
						
							| 17 | 14 16 | resubcld |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( ( x ` k ) - ( y ` k ) ) e. RR ) | 
						
							| 18 | 17 | resqcld |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) e. RR ) | 
						
							| 19 | 12 18 | syldan |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ) -> ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) e. RR ) | 
						
							| 20 | 8 19 | fsumrecl |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) e. RR ) | 
						
							| 21 | 17 | sqge0d |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> 0 <_ ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) | 
						
							| 22 | 12 21 | syldan |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ) -> 0 <_ ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) | 
						
							| 23 | 8 19 22 | fsumge0 |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> 0 <_ sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) | 
						
							| 24 | 20 23 | resqrtcld |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) e. RR ) | 
						
							| 25 | 24 | ralrimivva |  |-  ( I e. V -> A. x e. X A. y e. X ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) e. RR ) | 
						
							| 26 |  | eqid |  |-  ( x e. X , y e. X |-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) = ( x e. X , y e. X |-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) | 
						
							| 27 | 26 | fmpo |  |-  ( A. x e. X A. y e. X ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) e. RR <-> ( x e. X , y e. X |-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) : ( X X. X ) --> RR ) | 
						
							| 28 | 25 27 | sylib |  |-  ( I e. V -> ( x e. X , y e. X |-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) : ( X X. X ) --> RR ) | 
						
							| 29 | 1 2 | rrxmfval |  |-  ( I e. V -> D = ( x e. X , y e. X |-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) | 
						
							| 30 | 29 | feq1d |  |-  ( I e. V -> ( D : ( X X. X ) --> RR <-> ( x e. X , y e. X |-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) : ( X X. X ) --> RR ) ) | 
						
							| 31 | 28 30 | mpbird |  |-  ( I e. V -> D : ( X X. X ) --> RR ) | 
						
							| 32 |  | sqrt00 |  |-  ( ( sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) e. RR /\ 0 <_ sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) -> ( ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = 0 <-> sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 ) ) | 
						
							| 33 | 20 23 32 | syl2anc |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = 0 <-> sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 ) ) | 
						
							| 34 | 8 19 22 | fsum00 |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 <-> A. k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 ) ) | 
						
							| 35 | 17 | recnd |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( ( x ` k ) - ( y ` k ) ) e. CC ) | 
						
							| 36 |  | sqeq0 |  |-  ( ( ( x ` k ) - ( y ` k ) ) e. CC -> ( ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 <-> ( ( x ` k ) - ( y ` k ) ) = 0 ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 <-> ( ( x ` k ) - ( y ` k ) ) = 0 ) ) | 
						
							| 38 | 14 | recnd |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( x ` k ) e. CC ) | 
						
							| 39 | 16 | recnd |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( y ` k ) e. CC ) | 
						
							| 40 | 38 39 | subeq0ad |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( ( ( x ` k ) - ( y ` k ) ) = 0 <-> ( x ` k ) = ( y ` k ) ) ) | 
						
							| 41 | 37 40 | bitrd |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 <-> ( x ` k ) = ( y ` k ) ) ) | 
						
							| 42 | 12 41 | syldan |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ) -> ( ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 <-> ( x ` k ) = ( y ` k ) ) ) | 
						
							| 43 | 42 | ralbidva |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( A. k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 <-> A. k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( x ` k ) = ( y ` k ) ) ) | 
						
							| 44 | 33 34 43 | 3bitrd |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = 0 <-> A. k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( x ` k ) = ( y ` k ) ) ) | 
						
							| 45 | 1 2 | rrxmval |  |-  ( ( I e. V /\ x e. X /\ y e. X ) -> ( x D y ) = ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) | 
						
							| 46 | 45 | 3expb |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( x D y ) = ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) | 
						
							| 47 | 46 | eqeq1d |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( x D y ) = 0 <-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = 0 ) ) | 
						
							| 48 | 13 | ffnd |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> x Fn I ) | 
						
							| 49 | 15 | ffnd |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> y Fn I ) | 
						
							| 50 |  | eqfnfv |  |-  ( ( x Fn I /\ y Fn I ) -> ( x = y <-> A. k e. I ( x ` k ) = ( y ` k ) ) ) | 
						
							| 51 | 48 49 50 | syl2anc |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( x = y <-> A. k e. I ( x ` k ) = ( y ` k ) ) ) | 
						
							| 52 |  | ssun1 |  |-  ( x supp 0 ) C_ ( ( x supp 0 ) u. ( y supp 0 ) ) | 
						
							| 53 | 52 | a1i |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( x supp 0 ) C_ ( ( x supp 0 ) u. ( y supp 0 ) ) ) | 
						
							| 54 |  | simpl |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> I e. V ) | 
						
							| 55 |  | 0red |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> 0 e. RR ) | 
						
							| 56 | 13 53 54 55 | suppssr |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( I \ ( ( x supp 0 ) u. ( y supp 0 ) ) ) ) -> ( x ` k ) = 0 ) | 
						
							| 57 |  | ssun2 |  |-  ( y supp 0 ) C_ ( ( x supp 0 ) u. ( y supp 0 ) ) | 
						
							| 58 | 57 | a1i |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( y supp 0 ) C_ ( ( x supp 0 ) u. ( y supp 0 ) ) ) | 
						
							| 59 | 15 58 54 55 | suppssr |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( I \ ( ( x supp 0 ) u. ( y supp 0 ) ) ) ) -> ( y ` k ) = 0 ) | 
						
							| 60 | 56 59 | eqtr4d |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( I \ ( ( x supp 0 ) u. ( y supp 0 ) ) ) ) -> ( x ` k ) = ( y ` k ) ) | 
						
							| 61 | 60 | ralrimiva |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> A. k e. ( I \ ( ( x supp 0 ) u. ( y supp 0 ) ) ) ( x ` k ) = ( y ` k ) ) | 
						
							| 62 | 11 61 | raldifeq |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( A. k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( x ` k ) = ( y ` k ) <-> A. k e. I ( x ` k ) = ( y ` k ) ) ) | 
						
							| 63 | 51 62 | bitr4d |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( x = y <-> A. k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( x ` k ) = ( y ` k ) ) ) | 
						
							| 64 | 44 47 63 | 3bitr4d |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( x D y ) = 0 <-> x = y ) ) | 
						
							| 65 | 8 | 3adant2 |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) e. Fin ) | 
						
							| 66 |  | simp2 |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> z e. X ) | 
						
							| 67 | 1 66 | rrxfsupp |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( z supp 0 ) e. Fin ) | 
						
							| 68 |  | unfi |  |-  ( ( ( ( x supp 0 ) u. ( y supp 0 ) ) e. Fin /\ ( z supp 0 ) e. Fin ) -> ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) e. Fin ) | 
						
							| 69 | 65 67 68 | syl2anc |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) e. Fin ) | 
						
							| 70 | 69 | 3expa |  |-  ( ( ( I e. V /\ z e. X ) /\ ( x e. X /\ y e. X ) ) -> ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) e. Fin ) | 
						
							| 71 | 70 | an32s |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) e. Fin ) | 
						
							| 72 | 11 | adantr |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) C_ I ) | 
						
							| 73 |  | simpr |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> z e. X ) | 
						
							| 74 | 1 73 | rrxsuppss |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( z supp 0 ) C_ I ) | 
						
							| 75 | 72 74 | unssd |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) C_ I ) | 
						
							| 76 | 75 | sselda |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) -> k e. I ) | 
						
							| 77 | 14 | adantlr |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( x ` k ) e. RR ) | 
						
							| 78 | 1 73 | rrxf |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> z : I --> RR ) | 
						
							| 79 | 78 | ffvelcdmda |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( z ` k ) e. RR ) | 
						
							| 80 | 77 79 | resubcld |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( ( x ` k ) - ( z ` k ) ) e. RR ) | 
						
							| 81 | 76 80 | syldan |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) -> ( ( x ` k ) - ( z ` k ) ) e. RR ) | 
						
							| 82 | 16 | adantlr |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( y ` k ) e. RR ) | 
						
							| 83 | 79 82 | resubcld |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( ( z ` k ) - ( y ` k ) ) e. RR ) | 
						
							| 84 | 76 83 | syldan |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) -> ( ( z ` k ) - ( y ` k ) ) e. RR ) | 
						
							| 85 | 71 81 84 | trirn |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( ( x ` k ) - ( z ` k ) ) + ( ( z ` k ) - ( y ` k ) ) ) ^ 2 ) ) <_ ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) | 
						
							| 86 | 38 | adantlr |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( x ` k ) e. CC ) | 
						
							| 87 | 79 | recnd |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( z ` k ) e. CC ) | 
						
							| 88 | 39 | adantlr |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( y ` k ) e. CC ) | 
						
							| 89 | 86 87 88 | npncand |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( ( ( x ` k ) - ( z ` k ) ) + ( ( z ` k ) - ( y ` k ) ) ) = ( ( x ` k ) - ( y ` k ) ) ) | 
						
							| 90 | 89 | oveq1d |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( ( ( ( x ` k ) - ( z ` k ) ) + ( ( z ` k ) - ( y ` k ) ) ) ^ 2 ) = ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) | 
						
							| 91 | 76 90 | syldan |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) -> ( ( ( ( x ` k ) - ( z ` k ) ) + ( ( z ` k ) - ( y ` k ) ) ) ^ 2 ) = ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) | 
						
							| 92 | 91 | sumeq2dv |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( ( x ` k ) - ( z ` k ) ) + ( ( z ` k ) - ( y ` k ) ) ) ^ 2 ) = sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) | 
						
							| 93 | 92 | fveq2d |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( ( x ` k ) - ( z ` k ) ) + ( ( z ` k ) - ( y ` k ) ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) | 
						
							| 94 |  | sqsubswap |  |-  ( ( ( x ` k ) e. CC /\ ( z ` k ) e. CC ) -> ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) = ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) | 
						
							| 95 | 86 87 94 | syl2anc |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) = ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) | 
						
							| 96 | 76 95 | syldan |  |-  ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) -> ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) = ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) | 
						
							| 97 | 96 | sumeq2dv |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) = sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) | 
						
							| 98 | 97 | fveq2d |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) ) | 
						
							| 99 | 98 | oveq1d |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) = ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) | 
						
							| 100 | 85 93 99 | 3brtr3d |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) <_ ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) | 
						
							| 101 | 46 | adantr |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( x D y ) = ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) | 
						
							| 102 |  | simp1 |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> I e. V ) | 
						
							| 103 | 3 | 3adant2 |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> x e. X ) | 
						
							| 104 | 5 | 3adant2 |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> y e. X ) | 
						
							| 105 | 1 103 | rrxsuppss |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( x supp 0 ) C_ I ) | 
						
							| 106 | 1 104 | rrxsuppss |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( y supp 0 ) C_ I ) | 
						
							| 107 | 105 106 | unssd |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) C_ I ) | 
						
							| 108 | 1 66 | rrxsuppss |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( z supp 0 ) C_ I ) | 
						
							| 109 | 107 108 | unssd |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) C_ I ) | 
						
							| 110 |  | ssun1 |  |-  ( ( x supp 0 ) u. ( y supp 0 ) ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) | 
						
							| 111 | 110 | a1i |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) | 
						
							| 112 | 1 2 102 103 104 109 69 111 | rrxmetlem |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) | 
						
							| 113 | 112 | fveq2d |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) | 
						
							| 114 | 113 | 3expa |  |-  ( ( ( I e. V /\ z e. X ) /\ ( x e. X /\ y e. X ) ) -> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) | 
						
							| 115 | 114 | an32s |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) | 
						
							| 116 | 101 115 | eqtrd |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( x D y ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) | 
						
							| 117 | 1 2 | rrxmval |  |-  ( ( I e. V /\ z e. X /\ x e. X ) -> ( z D x ) = ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( x supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) ) | 
						
							| 118 | 117 | 3adant3r |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( z D x ) = ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( x supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) ) | 
						
							| 119 | 1 2 | rrxmval |  |-  ( ( I e. V /\ z e. X /\ y e. X ) -> ( z D y ) = ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( y supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) | 
						
							| 120 | 119 | 3adant3l |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( z D y ) = ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( y supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) | 
						
							| 121 | 118 120 | oveq12d |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( z D x ) + ( z D y ) ) = ( ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( x supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( y supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) | 
						
							| 122 |  | ssun2 |  |-  ( z supp 0 ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) | 
						
							| 123 | 122 | a1i |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( z supp 0 ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) | 
						
							| 124 | 52 110 | sstri |  |-  ( x supp 0 ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) | 
						
							| 125 | 124 | a1i |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( x supp 0 ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) | 
						
							| 126 | 123 125 | unssd |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( z supp 0 ) u. ( x supp 0 ) ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) | 
						
							| 127 | 1 2 102 66 103 109 69 126 | rrxmetlem |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> sum_ k e. ( ( z supp 0 ) u. ( x supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) = sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) | 
						
							| 128 | 127 | fveq2d |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( x supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) ) | 
						
							| 129 | 57 110 | sstri |  |-  ( y supp 0 ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) | 
						
							| 130 | 129 | a1i |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( y supp 0 ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) | 
						
							| 131 | 123 130 | unssd |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( z supp 0 ) u. ( y supp 0 ) ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) | 
						
							| 132 | 1 2 102 66 104 109 69 131 | rrxmetlem |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> sum_ k e. ( ( z supp 0 ) u. ( y supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) = sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) | 
						
							| 133 | 132 | fveq2d |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( y supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) | 
						
							| 134 | 128 133 | oveq12d |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( x supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( y supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) = ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) | 
						
							| 135 | 121 134 | eqtrd |  |-  ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( z D x ) + ( z D y ) ) = ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) | 
						
							| 136 | 135 | 3expa |  |-  ( ( ( I e. V /\ z e. X ) /\ ( x e. X /\ y e. X ) ) -> ( ( z D x ) + ( z D y ) ) = ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) | 
						
							| 137 | 136 | an32s |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( ( z D x ) + ( z D y ) ) = ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) | 
						
							| 138 | 100 116 137 | 3brtr4d |  |-  ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) | 
						
							| 139 | 138 | ralrimiva |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> A. z e. X ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) | 
						
							| 140 | 64 139 | jca |  |-  ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( ( x D y ) = 0 <-> x = y ) /\ A. z e. X ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) ) | 
						
							| 141 | 140 | ralrimivva |  |-  ( I e. V -> A. x e. X A. y e. X ( ( ( x D y ) = 0 <-> x = y ) /\ A. z e. X ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) ) | 
						
							| 142 |  | ovex |  |-  ( RR ^m I ) e. _V | 
						
							| 143 | 1 142 | rabex2 |  |-  X e. _V | 
						
							| 144 |  | ismet |  |-  ( X e. _V -> ( D e. ( Met ` X ) <-> ( D : ( X X. X ) --> RR /\ A. x e. X A. y e. X ( ( ( x D y ) = 0 <-> x = y ) /\ A. z e. X ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) ) ) ) | 
						
							| 145 | 143 144 | ax-mp |  |-  ( D e. ( Met ` X ) <-> ( D : ( X X. X ) --> RR /\ A. x e. X A. y e. X ( ( ( x D y ) = 0 <-> x = y ) /\ A. z e. X ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) ) ) | 
						
							| 146 | 31 141 145 | sylanbrc |  |-  ( I e. V -> D e. ( Met ` X ) ) |