| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxmval.1 |  |-  X = { h e. ( RR ^m I ) | h finSupp 0 } | 
						
							| 2 |  | rrxmval.d |  |-  D = ( dist ` ( RR^ ` I ) ) | 
						
							| 3 |  | rrxmetlem.1 |  |-  ( ph -> I e. V ) | 
						
							| 4 |  | rrxmetlem.2 |  |-  ( ph -> F e. X ) | 
						
							| 5 |  | rrxmetlem.3 |  |-  ( ph -> G e. X ) | 
						
							| 6 |  | rrxmetlem.4 |  |-  ( ph -> A C_ I ) | 
						
							| 7 |  | rrxmetlem.5 |  |-  ( ph -> A e. Fin ) | 
						
							| 8 |  | rrxmetlem.6 |  |-  ( ph -> ( ( F supp 0 ) u. ( G supp 0 ) ) C_ A ) | 
						
							| 9 | 8 6 | sstrd |  |-  ( ph -> ( ( F supp 0 ) u. ( G supp 0 ) ) C_ I ) | 
						
							| 10 | 9 | sselda |  |-  ( ( ph /\ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ) -> k e. I ) | 
						
							| 11 | 1 4 | rrxf |  |-  ( ph -> F : I --> RR ) | 
						
							| 12 | 11 | ffvelcdmda |  |-  ( ( ph /\ k e. I ) -> ( F ` k ) e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( ( ph /\ k e. I ) -> ( F ` k ) e. CC ) | 
						
							| 14 | 10 13 | syldan |  |-  ( ( ph /\ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ) -> ( F ` k ) e. CC ) | 
						
							| 15 | 1 5 | rrxf |  |-  ( ph -> G : I --> RR ) | 
						
							| 16 | 15 | ffvelcdmda |  |-  ( ( ph /\ k e. I ) -> ( G ` k ) e. RR ) | 
						
							| 17 | 16 | recnd |  |-  ( ( ph /\ k e. I ) -> ( G ` k ) e. CC ) | 
						
							| 18 | 10 17 | syldan |  |-  ( ( ph /\ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ) -> ( G ` k ) e. CC ) | 
						
							| 19 | 14 18 | subcld |  |-  ( ( ph /\ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ) -> ( ( F ` k ) - ( G ` k ) ) e. CC ) | 
						
							| 20 | 19 | sqcld |  |-  ( ( ph /\ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ) -> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) e. CC ) | 
						
							| 21 | 6 | ssdifd |  |-  ( ph -> ( A \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) C_ ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) | 
						
							| 22 | 21 | sselda |  |-  ( ( ph /\ k e. ( A \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) | 
						
							| 23 |  | simpr |  |-  ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) | 
						
							| 24 | 23 | eldifad |  |-  ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> k e. I ) | 
						
							| 25 | 24 13 | syldan |  |-  ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( F ` k ) e. CC ) | 
						
							| 26 |  | ssun1 |  |-  ( F supp 0 ) C_ ( ( F supp 0 ) u. ( G supp 0 ) ) | 
						
							| 27 | 26 | a1i |  |-  ( ph -> ( F supp 0 ) C_ ( ( F supp 0 ) u. ( G supp 0 ) ) ) | 
						
							| 28 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 29 | 11 27 3 28 | suppssr |  |-  ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( F ` k ) = 0 ) | 
						
							| 30 |  | ssun2 |  |-  ( G supp 0 ) C_ ( ( F supp 0 ) u. ( G supp 0 ) ) | 
						
							| 31 | 30 | a1i |  |-  ( ph -> ( G supp 0 ) C_ ( ( F supp 0 ) u. ( G supp 0 ) ) ) | 
						
							| 32 | 15 31 3 28 | suppssr |  |-  ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( G ` k ) = 0 ) | 
						
							| 33 | 29 32 | eqtr4d |  |-  ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( F ` k ) = ( G ` k ) ) | 
						
							| 34 | 25 33 | subeq0bd |  |-  ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( ( F ` k ) - ( G ` k ) ) = 0 ) | 
						
							| 35 | 34 | sq0id |  |-  ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) = 0 ) | 
						
							| 36 | 22 35 | syldan |  |-  ( ( ph /\ k e. ( A \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) = 0 ) | 
						
							| 37 | 8 20 36 7 | fsumss |  |-  ( ph -> sum_ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) = sum_ k e. A ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |