Description: Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxmval.1 | |- X = { h e. ( RR ^m I ) | h finSupp 0 } | |
| rrxf.1 | |- ( ph -> F e. X ) | ||
| Assertion | rrxf | |- ( ph -> F : I --> RR ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rrxmval.1 |  |-  X = { h e. ( RR ^m I ) | h finSupp 0 } | |
| 2 | rrxf.1 | |- ( ph -> F e. X ) | |
| 3 | 1 | ssrab3 | |- X C_ ( RR ^m I ) | 
| 4 | 3 2 | sselid | |- ( ph -> F e. ( RR ^m I ) ) | 
| 5 | elmapi | |- ( F e. ( RR ^m I ) -> F : I --> RR ) | |
| 6 | 4 5 | syl | |- ( ph -> F : I --> RR ) |