| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxmval.1 |  |-  X = { h e. ( RR ^m I ) | h finSupp 0 } | 
						
							| 2 |  | rrxmval.d |  |-  D = ( dist ` ( RR^ ` I ) ) | 
						
							| 3 |  | eqid |  |-  ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) | 
						
							| 4 |  | fvex |  |-  ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) e. _V | 
						
							| 5 | 3 4 | fnmpoi |  |-  ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) Fn ( ( Base ` ( RR^ ` I ) ) X. ( Base ` ( RR^ ` I ) ) ) | 
						
							| 6 |  | eqid |  |-  ( RR^ ` I ) = ( RR^ ` I ) | 
						
							| 7 |  | eqid |  |-  ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) | 
						
							| 8 | 6 7 | rrxds |  |-  ( I e. V -> ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( dist ` ( RR^ ` I ) ) ) | 
						
							| 9 | 2 8 | eqtr4id |  |-  ( I e. V -> D = ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) | 
						
							| 10 | 6 7 | rrxbase |  |-  ( I e. V -> ( Base ` ( RR^ ` I ) ) = { h e. ( RR ^m I ) | h finSupp 0 } ) | 
						
							| 11 | 1 10 | eqtr4id |  |-  ( I e. V -> X = ( Base ` ( RR^ ` I ) ) ) | 
						
							| 12 | 11 | sqxpeqd |  |-  ( I e. V -> ( X X. X ) = ( ( Base ` ( RR^ ` I ) ) X. ( Base ` ( RR^ ` I ) ) ) ) | 
						
							| 13 | 9 12 | fneq12d |  |-  ( I e. V -> ( D Fn ( X X. X ) <-> ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) Fn ( ( Base ` ( RR^ ` I ) ) X. ( Base ` ( RR^ ` I ) ) ) ) ) | 
						
							| 14 | 5 13 | mpbiri |  |-  ( I e. V -> D Fn ( X X. X ) ) | 
						
							| 15 |  | fnov |  |-  ( D Fn ( X X. X ) <-> D = ( f e. X , g e. X |-> ( f D g ) ) ) | 
						
							| 16 | 14 15 | sylib |  |-  ( I e. V -> D = ( f e. X , g e. X |-> ( f D g ) ) ) | 
						
							| 17 | 1 2 | rrxmval |  |-  ( ( I e. V /\ f e. X /\ g e. X ) -> ( f D g ) = ( sqrt ` sum_ k e. ( ( f supp 0 ) u. ( g supp 0 ) ) ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) | 
						
							| 18 | 17 | mpoeq3dva |  |-  ( I e. V -> ( f e. X , g e. X |-> ( f D g ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. ( ( f supp 0 ) u. ( g supp 0 ) ) ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 19 | 16 18 | eqtrd |  |-  ( I e. V -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. ( ( f supp 0 ) u. ( g supp 0 ) ) ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |