| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxmetfi.1 | ⊢ 𝐷  =  ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 2 |  | eqid | ⊢ { ℎ  ∈  ( ℝ  ↑m  𝐼 )  ∣  ℎ  finSupp  0 }  =  { ℎ  ∈  ( ℝ  ↑m  𝐼 )  ∣  ℎ  finSupp  0 } | 
						
							| 3 | 2 1 | rrxmet | ⊢ ( 𝐼  ∈  Fin  →  𝐷  ∈  ( Met ‘ { ℎ  ∈  ( ℝ  ↑m  𝐼 )  ∣  ℎ  finSupp  0 } ) ) | 
						
							| 4 |  | eqid | ⊢ ( ℝ^ ‘ 𝐼 )  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 6 | 4 5 | rrxbase | ⊢ ( 𝐼  ∈  Fin  →  ( Base ‘ ( ℝ^ ‘ 𝐼 ) )  =  { ℎ  ∈  ( ℝ  ↑m  𝐼 )  ∣  ℎ  finSupp  0 } ) | 
						
							| 7 |  | id | ⊢ ( 𝐼  ∈  Fin  →  𝐼  ∈  Fin ) | 
						
							| 8 | 7 4 5 | rrxbasefi | ⊢ ( 𝐼  ∈  Fin  →  ( Base ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 9 | 6 8 | eqtr3d | ⊢ ( 𝐼  ∈  Fin  →  { ℎ  ∈  ( ℝ  ↑m  𝐼 )  ∣  ℎ  finSupp  0 }  =  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝐼  ∈  Fin  →  ( Met ‘ { ℎ  ∈  ( ℝ  ↑m  𝐼 )  ∣  ℎ  finSupp  0 } )  =  ( Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 11 | 3 10 | eleqtrd | ⊢ ( 𝐼  ∈  Fin  →  𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝐼 ) ) ) |