Metamath Proof Explorer


Theorem rrxmetfi

Description: Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxmetfi.1 D=distmsup
Assertion rrxmetfi IFinDMetI

Proof

Step Hyp Ref Expression
1 rrxmetfi.1 D=distmsup
2 eqid hI|finSupp0h=hI|finSupp0h
3 2 1 rrxmet IFinDMethI|finSupp0h
4 eqid msup=msup
5 eqid Basemsup=Basemsup
6 4 5 rrxbase IFinBasemsup=hI|finSupp0h
7 id IFinIFin
8 7 4 5 rrxbasefi IFinBasemsup=I
9 6 8 eqtr3d IFinhI|finSupp0h=I
10 9 fveq2d IFinMethI|finSupp0h=MetI
11 3 10 eleqtrd IFinDMetI