| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxdsfival.1 | ⊢ 𝑋  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 2 |  | rrxdsfival.d | ⊢ 𝐷  =  ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 3 |  | eqid | ⊢ ( ℝ^ ‘ 𝐼 )  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 4 | 3 1 | rrxdsfi | ⊢ ( 𝐼  ∈  Fin  →  ( dist ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑥 ‘ 𝑘 )  −  ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 5 | 2 4 | eqtrid | ⊢ ( 𝐼  ∈  Fin  →  𝐷  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑥 ‘ 𝑘 )  −  ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 6 | 5 | oveqd | ⊢ ( 𝐼  ∈  Fin  →  ( 𝐹 𝐷 𝐺 )  =  ( 𝐹 ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑥 ‘ 𝑘 )  −  ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) 𝐺 ) ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( 𝐹 𝐷 𝐺 )  =  ( 𝐹 ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑥 ‘ 𝑘 )  −  ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) 𝐺 ) ) | 
						
							| 8 |  | eqidd | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑥 ‘ 𝑘 )  −  ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑥 ‘ 𝑘 )  −  ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑥  =  𝐹  →  ( 𝑥 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 10 |  | fveq1 | ⊢ ( 𝑦  =  𝐺  →  ( 𝑦 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 11 | 9 10 | oveqan12d | ⊢ ( ( 𝑥  =  𝐹  ∧  𝑦  =  𝐺 )  →  ( ( 𝑥 ‘ 𝑘 )  −  ( 𝑦 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( ( 𝑥  =  𝐹  ∧  𝑦  =  𝐺 )  →  ( ( ( 𝑥 ‘ 𝑘 )  −  ( 𝑦 ‘ 𝑘 ) ) ↑ 2 )  =  ( ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) | 
						
							| 13 | 12 | sumeq2sdv | ⊢ ( ( 𝑥  =  𝐹  ∧  𝑦  =  𝐺 )  →  Σ 𝑘  ∈  𝐼 ( ( ( 𝑥 ‘ 𝑘 )  −  ( 𝑦 ‘ 𝑘 ) ) ↑ 2 )  =  Σ 𝑘  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( ( 𝑥  =  𝐹  ∧  𝑦  =  𝐺 )  →  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑥 ‘ 𝑘 )  −  ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) )  =  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝐼  ∈  Fin  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  ∧  ( 𝑥  =  𝐹  ∧  𝑦  =  𝐺 ) )  →  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑥 ‘ 𝑘 )  −  ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) )  =  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) | 
						
							| 16 |  | simp2 | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  𝐹  ∈  𝑋 ) | 
						
							| 17 |  | simp3 | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  𝐺  ∈  𝑋 ) | 
						
							| 18 |  | fvexd | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) )  ∈  V ) | 
						
							| 19 | 8 15 16 17 18 | ovmpod | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( 𝐹 ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑥 ‘ 𝑘 )  −  ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) 𝐺 )  =  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) | 
						
							| 20 | 7 19 | eqtrd | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( 𝐹 𝐷 𝐺 )  =  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |