| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehleudis.i | ⊢ 𝐼  =  ( 1 ... 𝑁 ) | 
						
							| 2 |  | ehleudis.e | ⊢ 𝐸  =  ( 𝔼hil ‘ 𝑁 ) | 
						
							| 3 |  | ehleudis.x | ⊢ 𝑋  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 4 |  | ehleudis.d | ⊢ 𝐷  =  ( dist ‘ 𝐸 ) | 
						
							| 5 | 2 | ehlval | ⊢ ( 𝑁  ∈  ℕ0  →  𝐸  =  ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( dist ‘ 𝐸 )  =  ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 7 | 4 6 | eqtrid | ⊢ ( 𝑁  ∈  ℕ0  →  𝐷  =  ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 8 |  | fzfi | ⊢ ( 1 ... 𝑁 )  ∈  Fin | 
						
							| 9 | 1 8 | eqeltri | ⊢ 𝐼  ∈  Fin | 
						
							| 10 | 1 | eqcomi | ⊢ ( 1 ... 𝑁 )  =  𝐼 | 
						
							| 11 | 10 | fveq2i | ⊢ ( ℝ^ ‘ ( 1 ... 𝑁 ) )  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 12 | 11 | fveq2i | ⊢ ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) )  =  ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 13 |  | eqid | ⊢ ( ℝ^ ‘ 𝐼 )  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 14 | 13 3 | rrxdsfi | ⊢ ( 𝐼  ∈  Fin  →  ( dist ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 15 | 12 14 | eqtrid | ⊢ ( 𝐼  ∈  Fin  →  ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) )  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 16 | 9 15 | mp1i | ⊢ ( 𝑁  ∈  ℕ0  →  ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) )  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 17 | 7 16 | eqtrd | ⊢ ( 𝑁  ∈  ℕ0  →  𝐷  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |