| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehleudis.i | ⊢ 𝐼  =  ( 1 ... 𝑁 ) | 
						
							| 2 |  | ehleudis.e | ⊢ 𝐸  =  ( 𝔼hil ‘ 𝑁 ) | 
						
							| 3 |  | ehleudis.x | ⊢ 𝑋  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 4 |  | ehleudis.d | ⊢ 𝐷  =  ( dist ‘ 𝐸 ) | 
						
							| 5 | 2 | ehlval | ⊢ ( 𝑁  ∈  ℕ0  →  𝐸  =  ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( dist ‘ 𝐸 )  =  ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 7 | 4 6 | eqtrid | ⊢ ( 𝑁  ∈  ℕ0  →  𝐷  =  ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 8 | 7 | oveqd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐹 𝐷 𝐺 )  =  ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) ) | 
						
							| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( 𝐹 𝐷 𝐺 )  =  ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) ) | 
						
							| 10 |  | fzfi | ⊢ ( 1 ... 𝑁 )  ∈  Fin | 
						
							| 11 | 1 10 | eqeltri | ⊢ 𝐼  ∈  Fin | 
						
							| 12 | 3 | eleq2i | ⊢ ( 𝐹  ∈  𝑋  ↔  𝐹  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 13 | 12 | biimpi | ⊢ ( 𝐹  ∈  𝑋  →  𝐹  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  𝐹  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 15 | 3 | eleq2i | ⊢ ( 𝐺  ∈  𝑋  ↔  𝐺  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 16 | 15 | biimpi | ⊢ ( 𝐺  ∈  𝑋  →  𝐺  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  𝐺  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 18 |  | eqid | ⊢ ( ℝ  ↑m  𝐼 )  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 19 | 1 | eqcomi | ⊢ ( 1 ... 𝑁 )  =  𝐼 | 
						
							| 20 | 19 | fveq2i | ⊢ ( ℝ^ ‘ ( 1 ... 𝑁 ) )  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 21 | 20 | fveq2i | ⊢ ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) )  =  ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 22 | 18 21 | rrxdsfival | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝐹  ∈  ( ℝ  ↑m  𝐼 )  ∧  𝐺  ∈  ( ℝ  ↑m  𝐼 ) )  →  ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 )  =  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) | 
						
							| 23 | 11 14 17 22 | mp3an2i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 )  =  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) | 
						
							| 24 | 9 23 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( 𝐹 𝐷 𝐺 )  =  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |