Metamath Proof Explorer


Theorem ehleudisval

Description: The value of the Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023)

Ref Expression
Hypotheses ehleudis.i 𝐼 = ( 1 ... 𝑁 )
ehleudis.e 𝐸 = ( 𝔼hil𝑁 )
ehleudis.x 𝑋 = ( ℝ ↑m 𝐼 )
ehleudis.d 𝐷 = ( dist ‘ 𝐸 )
Assertion ehleudisval ( ( 𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) ) )

Proof

Step Hyp Ref Expression
1 ehleudis.i 𝐼 = ( 1 ... 𝑁 )
2 ehleudis.e 𝐸 = ( 𝔼hil𝑁 )
3 ehleudis.x 𝑋 = ( ℝ ↑m 𝐼 )
4 ehleudis.d 𝐷 = ( dist ‘ 𝐸 )
5 2 ehlval ( 𝑁 ∈ ℕ0𝐸 = ( ℝ^ ‘ ( 1 ... 𝑁 ) ) )
6 5 fveq2d ( 𝑁 ∈ ℕ0 → ( dist ‘ 𝐸 ) = ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) )
7 4 6 eqtrid ( 𝑁 ∈ ℕ0𝐷 = ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) )
8 7 oveqd ( 𝑁 ∈ ℕ0 → ( 𝐹 𝐷 𝐺 ) = ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) )
9 8 3ad2ant1 ( ( 𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) )
10 fzfi ( 1 ... 𝑁 ) ∈ Fin
11 1 10 eqeltri 𝐼 ∈ Fin
12 3 eleq2i ( 𝐹𝑋𝐹 ∈ ( ℝ ↑m 𝐼 ) )
13 12 biimpi ( 𝐹𝑋𝐹 ∈ ( ℝ ↑m 𝐼 ) )
14 13 3ad2ant2 ( ( 𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋 ) → 𝐹 ∈ ( ℝ ↑m 𝐼 ) )
15 3 eleq2i ( 𝐺𝑋𝐺 ∈ ( ℝ ↑m 𝐼 ) )
16 15 biimpi ( 𝐺𝑋𝐺 ∈ ( ℝ ↑m 𝐼 ) )
17 16 3ad2ant3 ( ( 𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋 ) → 𝐺 ∈ ( ℝ ↑m 𝐼 ) )
18 eqid ( ℝ ↑m 𝐼 ) = ( ℝ ↑m 𝐼 )
19 1 eqcomi ( 1 ... 𝑁 ) = 𝐼
20 19 fveq2i ( ℝ^ ‘ ( 1 ... 𝑁 ) ) = ( ℝ^ ‘ 𝐼 )
21 20 fveq2i ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) )
22 18 21 rrxdsfival ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ ( ℝ ↑m 𝐼 ) ∧ 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) → ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) = ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) ) )
23 11 14 17 22 mp3an2i ( ( 𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋 ) → ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) = ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) ) )
24 9 23 eqtrd ( ( 𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) ) )