| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehleudis.i |  |-  I = ( 1 ... N ) | 
						
							| 2 |  | ehleudis.e |  |-  E = ( EEhil ` N ) | 
						
							| 3 |  | ehleudis.x |  |-  X = ( RR ^m I ) | 
						
							| 4 |  | ehleudis.d |  |-  D = ( dist ` E ) | 
						
							| 5 | 2 | ehlval |  |-  ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( N e. NN0 -> ( dist ` E ) = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) | 
						
							| 7 | 4 6 | eqtrid |  |-  ( N e. NN0 -> D = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) | 
						
							| 8 | 7 | oveqd |  |-  ( N e. NN0 -> ( F D G ) = ( F ( dist ` ( RR^ ` ( 1 ... N ) ) ) G ) ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( N e. NN0 /\ F e. X /\ G e. X ) -> ( F D G ) = ( F ( dist ` ( RR^ ` ( 1 ... N ) ) ) G ) ) | 
						
							| 10 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 11 | 1 10 | eqeltri |  |-  I e. Fin | 
						
							| 12 | 3 | eleq2i |  |-  ( F e. X <-> F e. ( RR ^m I ) ) | 
						
							| 13 | 12 | biimpi |  |-  ( F e. X -> F e. ( RR ^m I ) ) | 
						
							| 14 | 13 | 3ad2ant2 |  |-  ( ( N e. NN0 /\ F e. X /\ G e. X ) -> F e. ( RR ^m I ) ) | 
						
							| 15 | 3 | eleq2i |  |-  ( G e. X <-> G e. ( RR ^m I ) ) | 
						
							| 16 | 15 | biimpi |  |-  ( G e. X -> G e. ( RR ^m I ) ) | 
						
							| 17 | 16 | 3ad2ant3 |  |-  ( ( N e. NN0 /\ F e. X /\ G e. X ) -> G e. ( RR ^m I ) ) | 
						
							| 18 |  | eqid |  |-  ( RR ^m I ) = ( RR ^m I ) | 
						
							| 19 | 1 | eqcomi |  |-  ( 1 ... N ) = I | 
						
							| 20 | 19 | fveq2i |  |-  ( RR^ ` ( 1 ... N ) ) = ( RR^ ` I ) | 
						
							| 21 | 20 | fveq2i |  |-  ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( dist ` ( RR^ ` I ) ) | 
						
							| 22 | 18 21 | rrxdsfival |  |-  ( ( I e. Fin /\ F e. ( RR ^m I ) /\ G e. ( RR ^m I ) ) -> ( F ( dist ` ( RR^ ` ( 1 ... N ) ) ) G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) | 
						
							| 23 | 11 14 17 22 | mp3an2i |  |-  ( ( N e. NN0 /\ F e. X /\ G e. X ) -> ( F ( dist ` ( RR^ ` ( 1 ... N ) ) ) G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) | 
						
							| 24 | 9 23 | eqtrd |  |-  ( ( N e. NN0 /\ F e. X /\ G e. X ) -> ( F D G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |