| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl1eudis.e |  |-  E = ( EEhil ` 1 ) | 
						
							| 2 |  | ehl1eudis.x |  |-  X = ( RR ^m { 1 } ) | 
						
							| 3 |  | ehl1eudis.d |  |-  D = ( dist ` E ) | 
						
							| 4 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 5 |  | 1z |  |-  1 e. ZZ | 
						
							| 6 |  | fzsn |  |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) | 
						
							| 7 | 5 6 | ax-mp |  |-  ( 1 ... 1 ) = { 1 } | 
						
							| 8 | 7 | eqcomi |  |-  { 1 } = ( 1 ... 1 ) | 
						
							| 9 | 8 1 2 3 | ehleudis |  |-  ( 1 e. NN0 -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 10 | 4 9 | ax-mp |  |-  D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) | 
						
							| 11 | 2 | eleq2i |  |-  ( f e. X <-> f e. ( RR ^m { 1 } ) ) | 
						
							| 12 |  | reex |  |-  RR e. _V | 
						
							| 13 |  | snex |  |-  { 1 } e. _V | 
						
							| 14 | 12 13 | elmap |  |-  ( f e. ( RR ^m { 1 } ) <-> f : { 1 } --> RR ) | 
						
							| 15 | 11 14 | bitri |  |-  ( f e. X <-> f : { 1 } --> RR ) | 
						
							| 16 |  | id |  |-  ( f : { 1 } --> RR -> f : { 1 } --> RR ) | 
						
							| 17 |  | 1ex |  |-  1 e. _V | 
						
							| 18 | 17 | snid |  |-  1 e. { 1 } | 
						
							| 19 | 18 | a1i |  |-  ( f : { 1 } --> RR -> 1 e. { 1 } ) | 
						
							| 20 | 16 19 | ffvelcdmd |  |-  ( f : { 1 } --> RR -> ( f ` 1 ) e. RR ) | 
						
							| 21 | 15 20 | sylbi |  |-  ( f e. X -> ( f ` 1 ) e. RR ) | 
						
							| 22 | 21 | adantr |  |-  ( ( f e. X /\ g e. X ) -> ( f ` 1 ) e. RR ) | 
						
							| 23 | 2 | eleq2i |  |-  ( g e. X <-> g e. ( RR ^m { 1 } ) ) | 
						
							| 24 | 12 13 | elmap |  |-  ( g e. ( RR ^m { 1 } ) <-> g : { 1 } --> RR ) | 
						
							| 25 | 23 24 | bitri |  |-  ( g e. X <-> g : { 1 } --> RR ) | 
						
							| 26 |  | id |  |-  ( g : { 1 } --> RR -> g : { 1 } --> RR ) | 
						
							| 27 | 18 | a1i |  |-  ( g : { 1 } --> RR -> 1 e. { 1 } ) | 
						
							| 28 | 26 27 | ffvelcdmd |  |-  ( g : { 1 } --> RR -> ( g ` 1 ) e. RR ) | 
						
							| 29 | 25 28 | sylbi |  |-  ( g e. X -> ( g ` 1 ) e. RR ) | 
						
							| 30 | 29 | adantl |  |-  ( ( f e. X /\ g e. X ) -> ( g ` 1 ) e. RR ) | 
						
							| 31 | 22 30 | resubcld |  |-  ( ( f e. X /\ g e. X ) -> ( ( f ` 1 ) - ( g ` 1 ) ) e. RR ) | 
						
							| 32 | 31 | resqcld |  |-  ( ( f e. X /\ g e. X ) -> ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. RR ) | 
						
							| 33 | 32 | recnd |  |-  ( ( f e. X /\ g e. X ) -> ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. CC ) | 
						
							| 34 |  | fveq2 |  |-  ( k = 1 -> ( f ` k ) = ( f ` 1 ) ) | 
						
							| 35 |  | fveq2 |  |-  ( k = 1 -> ( g ` k ) = ( g ` 1 ) ) | 
						
							| 36 | 34 35 | oveq12d |  |-  ( k = 1 -> ( ( f ` k ) - ( g ` k ) ) = ( ( f ` 1 ) - ( g ` 1 ) ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( k = 1 -> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) | 
						
							| 38 | 37 | sumsn |  |-  ( ( 1 e. ZZ /\ ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. CC ) -> sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) | 
						
							| 39 | 5 33 38 | sylancr |  |-  ( ( f e. X /\ g e. X ) -> sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ( f e. X /\ g e. X ) -> ( sqrt ` sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( sqrt ` ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) ) | 
						
							| 41 | 31 | absred |  |-  ( ( f e. X /\ g e. X ) -> ( abs ` ( ( f ` 1 ) - ( g ` 1 ) ) ) = ( sqrt ` ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) ) | 
						
							| 42 | 40 41 | eqtr4d |  |-  ( ( f e. X /\ g e. X ) -> ( sqrt ` sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( abs ` ( ( f ` 1 ) - ( g ` 1 ) ) ) ) | 
						
							| 43 | 42 | mpoeq3ia |  |-  ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = ( f e. X , g e. X |-> ( abs ` ( ( f ` 1 ) - ( g ` 1 ) ) ) ) | 
						
							| 44 | 10 43 | eqtri |  |-  D = ( f e. X , g e. X |-> ( abs ` ( ( f ` 1 ) - ( g ` 1 ) ) ) ) |