Metamath Proof Explorer


Theorem elmap

Description: Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003)

Ref Expression
Hypotheses elmap.1
|- A e. _V
elmap.2
|- B e. _V
Assertion elmap
|- ( F e. ( A ^m B ) <-> F : B --> A )

Proof

Step Hyp Ref Expression
1 elmap.1
 |-  A e. _V
2 elmap.2
 |-  B e. _V
3 elmapg
 |-  ( ( A e. _V /\ B e. _V ) -> ( F e. ( A ^m B ) <-> F : B --> A ) )
4 1 2 3 mp2an
 |-  ( F e. ( A ^m B ) <-> F : B --> A )