Description: Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elmap.1 | |- A e. _V |
|
elmap.2 | |- B e. _V |
||
Assertion | elmap | |- ( F e. ( A ^m B ) <-> F : B --> A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmap.1 | |- A e. _V |
|
2 | elmap.2 | |- B e. _V |
|
3 | elmapg | |- ( ( A e. _V /\ B e. _V ) -> ( F e. ( A ^m B ) <-> F : B --> A ) ) |
|
4 | 1 2 3 | mp2an | |- ( F e. ( A ^m B ) <-> F : B --> A ) |