Metamath Proof Explorer
Description: Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003)
|
|
Ref |
Expression |
|
Hypotheses |
elmap.1 |
⊢ 𝐴 ∈ V |
|
|
elmap.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
elmap |
⊢ ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elmap.1 |
⊢ 𝐴 ∈ V |
2 |
|
elmap.2 |
⊢ 𝐵 ∈ V |
3 |
|
elmapg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ 𝐴 ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ 𝐴 ) |