| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elmap.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
elmap.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
dff2 |
⊢ ( 𝑔 : 𝐵 ⟶ 𝐴 ↔ ( 𝑔 Fn 𝐵 ∧ 𝑔 ⊆ ( 𝐵 × 𝐴 ) ) ) |
| 4 |
3
|
biancomi |
⊢ ( 𝑔 : 𝐵 ⟶ 𝐴 ↔ ( 𝑔 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑔 Fn 𝐵 ) ) |
| 5 |
1 2
|
elmap |
⊢ ( 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝑔 : 𝐵 ⟶ 𝐴 ) |
| 6 |
|
elin |
⊢ ( 𝑔 ∈ ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) ↔ ( 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝑔 ∈ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) ) |
| 7 |
|
velpw |
⊢ ( 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↔ 𝑔 ⊆ ( 𝐵 × 𝐴 ) ) |
| 8 |
|
vex |
⊢ 𝑔 ∈ V |
| 9 |
|
fneq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn 𝐵 ↔ 𝑔 Fn 𝐵 ) ) |
| 10 |
8 9
|
elab |
⊢ ( 𝑔 ∈ { 𝑓 ∣ 𝑓 Fn 𝐵 } ↔ 𝑔 Fn 𝐵 ) |
| 11 |
7 10
|
anbi12i |
⊢ ( ( 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝑔 ∈ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) ↔ ( 𝑔 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑔 Fn 𝐵 ) ) |
| 12 |
6 11
|
bitri |
⊢ ( 𝑔 ∈ ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) ↔ ( 𝑔 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑔 Fn 𝐵 ) ) |
| 13 |
4 5 12
|
3bitr4i |
⊢ ( 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝑔 ∈ ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) ) |
| 14 |
13
|
eqriv |
⊢ ( 𝐴 ↑m 𝐵 ) = ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) |