Metamath Proof Explorer


Theorem mapval2

Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007)

Ref Expression
Hypotheses elmap.1 𝐴 ∈ V
elmap.2 𝐵 ∈ V
Assertion mapval2 ( 𝐴m 𝐵 ) = ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓𝑓 Fn 𝐵 } )

Proof

Step Hyp Ref Expression
1 elmap.1 𝐴 ∈ V
2 elmap.2 𝐵 ∈ V
3 dff2 ( 𝑔 : 𝐵𝐴 ↔ ( 𝑔 Fn 𝐵𝑔 ⊆ ( 𝐵 × 𝐴 ) ) )
4 3 biancomi ( 𝑔 : 𝐵𝐴 ↔ ( 𝑔 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑔 Fn 𝐵 ) )
5 1 2 elmap ( 𝑔 ∈ ( 𝐴m 𝐵 ) ↔ 𝑔 : 𝐵𝐴 )
6 elin ( 𝑔 ∈ ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓𝑓 Fn 𝐵 } ) ↔ ( 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝑔 ∈ { 𝑓𝑓 Fn 𝐵 } ) )
7 velpw ( 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↔ 𝑔 ⊆ ( 𝐵 × 𝐴 ) )
8 vex 𝑔 ∈ V
9 fneq1 ( 𝑓 = 𝑔 → ( 𝑓 Fn 𝐵𝑔 Fn 𝐵 ) )
10 8 9 elab ( 𝑔 ∈ { 𝑓𝑓 Fn 𝐵 } ↔ 𝑔 Fn 𝐵 )
11 7 10 anbi12i ( ( 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝑔 ∈ { 𝑓𝑓 Fn 𝐵 } ) ↔ ( 𝑔 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑔 Fn 𝐵 ) )
12 6 11 bitri ( 𝑔 ∈ ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓𝑓 Fn 𝐵 } ) ↔ ( 𝑔 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑔 Fn 𝐵 ) )
13 4 5 12 3bitr4i ( 𝑔 ∈ ( 𝐴m 𝐵 ) ↔ 𝑔 ∈ ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓𝑓 Fn 𝐵 } ) )
14 13 eqriv ( 𝐴m 𝐵 ) = ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓𝑓 Fn 𝐵 } )