Step |
Hyp |
Ref |
Expression |
1 |
|
elmap.1 |
|- A e. _V |
2 |
|
elmap.2 |
|- B e. _V |
3 |
|
dff2 |
|- ( g : B --> A <-> ( g Fn B /\ g C_ ( B X. A ) ) ) |
4 |
3
|
biancomi |
|- ( g : B --> A <-> ( g C_ ( B X. A ) /\ g Fn B ) ) |
5 |
1 2
|
elmap |
|- ( g e. ( A ^m B ) <-> g : B --> A ) |
6 |
|
elin |
|- ( g e. ( ~P ( B X. A ) i^i { f | f Fn B } ) <-> ( g e. ~P ( B X. A ) /\ g e. { f | f Fn B } ) ) |
7 |
|
velpw |
|- ( g e. ~P ( B X. A ) <-> g C_ ( B X. A ) ) |
8 |
|
vex |
|- g e. _V |
9 |
|
fneq1 |
|- ( f = g -> ( f Fn B <-> g Fn B ) ) |
10 |
8 9
|
elab |
|- ( g e. { f | f Fn B } <-> g Fn B ) |
11 |
7 10
|
anbi12i |
|- ( ( g e. ~P ( B X. A ) /\ g e. { f | f Fn B } ) <-> ( g C_ ( B X. A ) /\ g Fn B ) ) |
12 |
6 11
|
bitri |
|- ( g e. ( ~P ( B X. A ) i^i { f | f Fn B } ) <-> ( g C_ ( B X. A ) /\ g Fn B ) ) |
13 |
4 5 12
|
3bitr4i |
|- ( g e. ( A ^m B ) <-> g e. ( ~P ( B X. A ) i^i { f | f Fn B } ) ) |
14 |
13
|
eqriv |
|- ( A ^m B ) = ( ~P ( B X. A ) i^i { f | f Fn B } ) |