Metamath Proof Explorer


Theorem elpm

Description: The predicate "is a partial function". (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypotheses elmap.1
|- A e. _V
elmap.2
|- B e. _V
Assertion elpm
|- ( F e. ( A ^pm B ) <-> ( Fun F /\ F C_ ( B X. A ) ) )

Proof

Step Hyp Ref Expression
1 elmap.1
 |-  A e. _V
2 elmap.2
 |-  B e. _V
3 elpmg
 |-  ( ( A e. _V /\ B e. _V ) -> ( F e. ( A ^pm B ) <-> ( Fun F /\ F C_ ( B X. A ) ) ) )
4 1 2 3 mp2an
 |-  ( F e. ( A ^pm B ) <-> ( Fun F /\ F C_ ( B X. A ) ) )