Metamath Proof Explorer
Description: The predicate "is a partial function". (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 14-Nov-2013)
|
|
Ref |
Expression |
|
Hypotheses |
elmap.1 |
⊢ 𝐴 ∈ V |
|
|
elmap.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
elpm |
⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐵 × 𝐴 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elmap.1 |
⊢ 𝐴 ∈ V |
2 |
|
elmap.2 |
⊢ 𝐵 ∈ V |
3 |
|
elpmg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐵 × 𝐴 ) ) ) |