Metamath Proof Explorer


Theorem mapval2

Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007)

Ref Expression
Hypotheses elmap.1 A V
elmap.2 B V
Assertion mapval2 A B = 𝒫 B × A f | f Fn B

Proof

Step Hyp Ref Expression
1 elmap.1 A V
2 elmap.2 B V
3 dff2 g : B A g Fn B g B × A
4 3 biancomi g : B A g B × A g Fn B
5 1 2 elmap g A B g : B A
6 elin g 𝒫 B × A f | f Fn B g 𝒫 B × A g f | f Fn B
7 velpw g 𝒫 B × A g B × A
8 vex g V
9 fneq1 f = g f Fn B g Fn B
10 8 9 elab g f | f Fn B g Fn B
11 7 10 anbi12i g 𝒫 B × A g f | f Fn B g B × A g Fn B
12 6 11 bitri g 𝒫 B × A f | f Fn B g B × A g Fn B
13 4 5 12 3bitr4i g A B g 𝒫 B × A f | f Fn B
14 13 eqriv A B = 𝒫 B × A f | f Fn B