Metamath Proof Explorer


Theorem elmap

Description: Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003)

Ref Expression
Hypotheses elmap.1 A V
elmap.2 B V
Assertion elmap F A B F : B A

Proof

Step Hyp Ref Expression
1 elmap.1 A V
2 elmap.2 B V
3 elmapg A V B V F A B F : B A
4 1 2 3 mp2an F A B F : B A