Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
The mapping operation
elmap
Next ⟩
mapval2
Metamath Proof Explorer
Ascii
Unicode
Theorem
elmap
Description:
Membership relation for set exponentiation.
(Contributed by
NM
, 8-Dec-2003)
Ref
Expression
Hypotheses
elmap.1
⊢
A
∈
V
elmap.2
⊢
B
∈
V
Assertion
elmap
⊢
F
∈
A
B
↔
F
:
B
⟶
A
Proof
Step
Hyp
Ref
Expression
1
elmap.1
⊢
A
∈
V
2
elmap.2
⊢
B
∈
V
3
elmapg
⊢
A
∈
V
∧
B
∈
V
→
F
∈
A
B
↔
F
:
B
⟶
A
4
1
2
3
mp2an
⊢
F
∈
A
B
↔
F
:
B
⟶
A