Metamath Proof Explorer


Theorem elmap

Description: Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003)

Ref Expression
Hypotheses elmap.1 AV
elmap.2 BV
Assertion elmap FABF:BA

Proof

Step Hyp Ref Expression
1 elmap.1 AV
2 elmap.2 BV
3 elmapg AVBVFABF:BA
4 1 2 3 mp2an FABF:BA