| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ehl1eudis.e |
|- E = ( EEhil ` 1 ) |
| 2 |
|
ehl1eudis.x |
|- X = ( RR ^m { 1 } ) |
| 3 |
|
ehl1eudis.d |
|- D = ( dist ` E ) |
| 4 |
|
fveq1 |
|- ( x = F -> ( x ` 1 ) = ( F ` 1 ) ) |
| 5 |
4
|
fvoveq1d |
|- ( x = F -> ( abs ` ( ( x ` 1 ) - ( y ` 1 ) ) ) = ( abs ` ( ( F ` 1 ) - ( y ` 1 ) ) ) ) |
| 6 |
|
fveq1 |
|- ( y = G -> ( y ` 1 ) = ( G ` 1 ) ) |
| 7 |
6
|
oveq2d |
|- ( y = G -> ( ( F ` 1 ) - ( y ` 1 ) ) = ( ( F ` 1 ) - ( G ` 1 ) ) ) |
| 8 |
7
|
fveq2d |
|- ( y = G -> ( abs ` ( ( F ` 1 ) - ( y ` 1 ) ) ) = ( abs ` ( ( F ` 1 ) - ( G ` 1 ) ) ) ) |
| 9 |
1 2 3
|
ehl1eudis |
|- D = ( x e. X , y e. X |-> ( abs ` ( ( x ` 1 ) - ( y ` 1 ) ) ) ) |
| 10 |
|
fvex |
|- ( abs ` ( ( F ` 1 ) - ( G ` 1 ) ) ) e. _V |
| 11 |
5 8 9 10
|
ovmpo |
|- ( ( F e. X /\ G e. X ) -> ( F D G ) = ( abs ` ( ( F ` 1 ) - ( G ` 1 ) ) ) ) |