| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl1eudis.e |  |-  E = ( EEhil ` 1 ) | 
						
							| 2 |  | ehl1eudis.x |  |-  X = ( RR ^m { 1 } ) | 
						
							| 3 |  | ehl1eudis.d |  |-  D = ( dist ` E ) | 
						
							| 4 |  | fveq1 |  |-  ( x = F -> ( x ` 1 ) = ( F ` 1 ) ) | 
						
							| 5 | 4 | fvoveq1d |  |-  ( x = F -> ( abs ` ( ( x ` 1 ) - ( y ` 1 ) ) ) = ( abs ` ( ( F ` 1 ) - ( y ` 1 ) ) ) ) | 
						
							| 6 |  | fveq1 |  |-  ( y = G -> ( y ` 1 ) = ( G ` 1 ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( y = G -> ( ( F ` 1 ) - ( y ` 1 ) ) = ( ( F ` 1 ) - ( G ` 1 ) ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( y = G -> ( abs ` ( ( F ` 1 ) - ( y ` 1 ) ) ) = ( abs ` ( ( F ` 1 ) - ( G ` 1 ) ) ) ) | 
						
							| 9 | 1 2 3 | ehl1eudis |  |-  D = ( x e. X , y e. X |-> ( abs ` ( ( x ` 1 ) - ( y ` 1 ) ) ) ) | 
						
							| 10 |  | fvex |  |-  ( abs ` ( ( F ` 1 ) - ( G ` 1 ) ) ) e. _V | 
						
							| 11 | 5 8 9 10 | ovmpo |  |-  ( ( F e. X /\ G e. X ) -> ( F D G ) = ( abs ` ( ( F ` 1 ) - ( G ` 1 ) ) ) ) |