| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ehl2eudis.e |
|- E = ( EEhil ` 2 ) |
| 2 |
|
ehl2eudis.x |
|- X = ( RR ^m { 1 , 2 } ) |
| 3 |
|
ehl2eudis.d |
|- D = ( dist ` E ) |
| 4 |
|
2nn0 |
|- 2 e. NN0 |
| 5 |
|
fz12pr |
|- ( 1 ... 2 ) = { 1 , 2 } |
| 6 |
5
|
eqcomi |
|- { 1 , 2 } = ( 1 ... 2 ) |
| 7 |
6 1 2 3
|
ehleudis |
|- ( 2 e. NN0 -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| 8 |
4 7
|
ax-mp |
|- D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
| 9 |
|
fveq2 |
|- ( k = 1 -> ( f ` k ) = ( f ` 1 ) ) |
| 10 |
|
fveq2 |
|- ( k = 1 -> ( g ` k ) = ( g ` 1 ) ) |
| 11 |
9 10
|
oveq12d |
|- ( k = 1 -> ( ( f ` k ) - ( g ` k ) ) = ( ( f ` 1 ) - ( g ` 1 ) ) ) |
| 12 |
11
|
oveq1d |
|- ( k = 1 -> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) |
| 13 |
|
fveq2 |
|- ( k = 2 -> ( f ` k ) = ( f ` 2 ) ) |
| 14 |
|
fveq2 |
|- ( k = 2 -> ( g ` k ) = ( g ` 2 ) ) |
| 15 |
13 14
|
oveq12d |
|- ( k = 2 -> ( ( f ` k ) - ( g ` k ) ) = ( ( f ` 2 ) - ( g ` 2 ) ) ) |
| 16 |
15
|
oveq1d |
|- ( k = 2 -> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) |
| 17 |
2
|
eleq2i |
|- ( f e. X <-> f e. ( RR ^m { 1 , 2 } ) ) |
| 18 |
|
reex |
|- RR e. _V |
| 19 |
|
prex |
|- { 1 , 2 } e. _V |
| 20 |
18 19
|
elmap |
|- ( f e. ( RR ^m { 1 , 2 } ) <-> f : { 1 , 2 } --> RR ) |
| 21 |
17 20
|
bitri |
|- ( f e. X <-> f : { 1 , 2 } --> RR ) |
| 22 |
|
id |
|- ( f : { 1 , 2 } --> RR -> f : { 1 , 2 } --> RR ) |
| 23 |
|
1ex |
|- 1 e. _V |
| 24 |
23
|
prid1 |
|- 1 e. { 1 , 2 } |
| 25 |
24
|
a1i |
|- ( f : { 1 , 2 } --> RR -> 1 e. { 1 , 2 } ) |
| 26 |
22 25
|
ffvelcdmd |
|- ( f : { 1 , 2 } --> RR -> ( f ` 1 ) e. RR ) |
| 27 |
21 26
|
sylbi |
|- ( f e. X -> ( f ` 1 ) e. RR ) |
| 28 |
27
|
adantr |
|- ( ( f e. X /\ g e. X ) -> ( f ` 1 ) e. RR ) |
| 29 |
2
|
eleq2i |
|- ( g e. X <-> g e. ( RR ^m { 1 , 2 } ) ) |
| 30 |
18 19
|
elmap |
|- ( g e. ( RR ^m { 1 , 2 } ) <-> g : { 1 , 2 } --> RR ) |
| 31 |
29 30
|
bitri |
|- ( g e. X <-> g : { 1 , 2 } --> RR ) |
| 32 |
|
id |
|- ( g : { 1 , 2 } --> RR -> g : { 1 , 2 } --> RR ) |
| 33 |
24
|
a1i |
|- ( g : { 1 , 2 } --> RR -> 1 e. { 1 , 2 } ) |
| 34 |
32 33
|
ffvelcdmd |
|- ( g : { 1 , 2 } --> RR -> ( g ` 1 ) e. RR ) |
| 35 |
31 34
|
sylbi |
|- ( g e. X -> ( g ` 1 ) e. RR ) |
| 36 |
35
|
adantl |
|- ( ( f e. X /\ g e. X ) -> ( g ` 1 ) e. RR ) |
| 37 |
28 36
|
resubcld |
|- ( ( f e. X /\ g e. X ) -> ( ( f ` 1 ) - ( g ` 1 ) ) e. RR ) |
| 38 |
37
|
resqcld |
|- ( ( f e. X /\ g e. X ) -> ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. RR ) |
| 39 |
38
|
recnd |
|- ( ( f e. X /\ g e. X ) -> ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. CC ) |
| 40 |
|
2ex |
|- 2 e. _V |
| 41 |
40
|
prid2 |
|- 2 e. { 1 , 2 } |
| 42 |
41
|
a1i |
|- ( f : { 1 , 2 } --> RR -> 2 e. { 1 , 2 } ) |
| 43 |
22 42
|
ffvelcdmd |
|- ( f : { 1 , 2 } --> RR -> ( f ` 2 ) e. RR ) |
| 44 |
21 43
|
sylbi |
|- ( f e. X -> ( f ` 2 ) e. RR ) |
| 45 |
44
|
adantr |
|- ( ( f e. X /\ g e. X ) -> ( f ` 2 ) e. RR ) |
| 46 |
41
|
a1i |
|- ( g : { 1 , 2 } --> RR -> 2 e. { 1 , 2 } ) |
| 47 |
32 46
|
ffvelcdmd |
|- ( g : { 1 , 2 } --> RR -> ( g ` 2 ) e. RR ) |
| 48 |
31 47
|
sylbi |
|- ( g e. X -> ( g ` 2 ) e. RR ) |
| 49 |
48
|
adantl |
|- ( ( f e. X /\ g e. X ) -> ( g ` 2 ) e. RR ) |
| 50 |
45 49
|
resubcld |
|- ( ( f e. X /\ g e. X ) -> ( ( f ` 2 ) - ( g ` 2 ) ) e. RR ) |
| 51 |
50
|
resqcld |
|- ( ( f e. X /\ g e. X ) -> ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) e. RR ) |
| 52 |
51
|
recnd |
|- ( ( f e. X /\ g e. X ) -> ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) e. CC ) |
| 53 |
39 52
|
jca |
|- ( ( f e. X /\ g e. X ) -> ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. CC /\ ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) e. CC ) ) |
| 54 |
23 40
|
pm3.2i |
|- ( 1 e. _V /\ 2 e. _V ) |
| 55 |
54
|
a1i |
|- ( ( f e. X /\ g e. X ) -> ( 1 e. _V /\ 2 e. _V ) ) |
| 56 |
|
1ne2 |
|- 1 =/= 2 |
| 57 |
56
|
a1i |
|- ( ( f e. X /\ g e. X ) -> 1 =/= 2 ) |
| 58 |
12 16 53 55 57
|
sumpr |
|- ( ( f e. X /\ g e. X ) -> sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) |
| 59 |
58
|
fveq2d |
|- ( ( f e. X /\ g e. X ) -> ( sqrt ` sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) |
| 60 |
59
|
mpoeq3ia |
|- ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) |
| 61 |
8 60
|
eqtri |
|- D = ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) |