| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ehl2eudis.e |
⊢ 𝐸 = ( 𝔼hil ‘ 2 ) |
| 2 |
|
ehl2eudis.x |
⊢ 𝑋 = ( ℝ ↑m { 1 , 2 } ) |
| 3 |
|
ehl2eudis.d |
⊢ 𝐷 = ( dist ‘ 𝐸 ) |
| 4 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 5 |
|
fz12pr |
⊢ ( 1 ... 2 ) = { 1 , 2 } |
| 6 |
5
|
eqcomi |
⊢ { 1 , 2 } = ( 1 ... 2 ) |
| 7 |
6 1 2 3
|
ehleudis |
⊢ ( 2 ∈ ℕ0 → 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ { 1 , 2 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 8 |
4 7
|
ax-mp |
⊢ 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ { 1 , 2 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 1 ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 1 ) ) |
| 11 |
9 10
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) = ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑘 = 2 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 2 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑘 = 2 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 2 ) ) |
| 15 |
13 14
|
oveq12d |
⊢ ( 𝑘 = 2 → ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) = ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑘 = 2 → ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) |
| 17 |
2
|
eleq2i |
⊢ ( 𝑓 ∈ 𝑋 ↔ 𝑓 ∈ ( ℝ ↑m { 1 , 2 } ) ) |
| 18 |
|
reex |
⊢ ℝ ∈ V |
| 19 |
|
prex |
⊢ { 1 , 2 } ∈ V |
| 20 |
18 19
|
elmap |
⊢ ( 𝑓 ∈ ( ℝ ↑m { 1 , 2 } ) ↔ 𝑓 : { 1 , 2 } ⟶ ℝ ) |
| 21 |
17 20
|
bitri |
⊢ ( 𝑓 ∈ 𝑋 ↔ 𝑓 : { 1 , 2 } ⟶ ℝ ) |
| 22 |
|
id |
⊢ ( 𝑓 : { 1 , 2 } ⟶ ℝ → 𝑓 : { 1 , 2 } ⟶ ℝ ) |
| 23 |
|
1ex |
⊢ 1 ∈ V |
| 24 |
23
|
prid1 |
⊢ 1 ∈ { 1 , 2 } |
| 25 |
24
|
a1i |
⊢ ( 𝑓 : { 1 , 2 } ⟶ ℝ → 1 ∈ { 1 , 2 } ) |
| 26 |
22 25
|
ffvelcdmd |
⊢ ( 𝑓 : { 1 , 2 } ⟶ ℝ → ( 𝑓 ‘ 1 ) ∈ ℝ ) |
| 27 |
21 26
|
sylbi |
⊢ ( 𝑓 ∈ 𝑋 → ( 𝑓 ‘ 1 ) ∈ ℝ ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑓 ‘ 1 ) ∈ ℝ ) |
| 29 |
2
|
eleq2i |
⊢ ( 𝑔 ∈ 𝑋 ↔ 𝑔 ∈ ( ℝ ↑m { 1 , 2 } ) ) |
| 30 |
18 19
|
elmap |
⊢ ( 𝑔 ∈ ( ℝ ↑m { 1 , 2 } ) ↔ 𝑔 : { 1 , 2 } ⟶ ℝ ) |
| 31 |
29 30
|
bitri |
⊢ ( 𝑔 ∈ 𝑋 ↔ 𝑔 : { 1 , 2 } ⟶ ℝ ) |
| 32 |
|
id |
⊢ ( 𝑔 : { 1 , 2 } ⟶ ℝ → 𝑔 : { 1 , 2 } ⟶ ℝ ) |
| 33 |
24
|
a1i |
⊢ ( 𝑔 : { 1 , 2 } ⟶ ℝ → 1 ∈ { 1 , 2 } ) |
| 34 |
32 33
|
ffvelcdmd |
⊢ ( 𝑔 : { 1 , 2 } ⟶ ℝ → ( 𝑔 ‘ 1 ) ∈ ℝ ) |
| 35 |
31 34
|
sylbi |
⊢ ( 𝑔 ∈ 𝑋 → ( 𝑔 ‘ 1 ) ∈ ℝ ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑔 ‘ 1 ) ∈ ℝ ) |
| 37 |
28 36
|
resubcld |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ∈ ℝ ) |
| 38 |
37
|
resqcld |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ∈ ℝ ) |
| 39 |
38
|
recnd |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ∈ ℂ ) |
| 40 |
|
2ex |
⊢ 2 ∈ V |
| 41 |
40
|
prid2 |
⊢ 2 ∈ { 1 , 2 } |
| 42 |
41
|
a1i |
⊢ ( 𝑓 : { 1 , 2 } ⟶ ℝ → 2 ∈ { 1 , 2 } ) |
| 43 |
22 42
|
ffvelcdmd |
⊢ ( 𝑓 : { 1 , 2 } ⟶ ℝ → ( 𝑓 ‘ 2 ) ∈ ℝ ) |
| 44 |
21 43
|
sylbi |
⊢ ( 𝑓 ∈ 𝑋 → ( 𝑓 ‘ 2 ) ∈ ℝ ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑓 ‘ 2 ) ∈ ℝ ) |
| 46 |
41
|
a1i |
⊢ ( 𝑔 : { 1 , 2 } ⟶ ℝ → 2 ∈ { 1 , 2 } ) |
| 47 |
32 46
|
ffvelcdmd |
⊢ ( 𝑔 : { 1 , 2 } ⟶ ℝ → ( 𝑔 ‘ 2 ) ∈ ℝ ) |
| 48 |
31 47
|
sylbi |
⊢ ( 𝑔 ∈ 𝑋 → ( 𝑔 ‘ 2 ) ∈ ℝ ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑔 ‘ 2 ) ∈ ℝ ) |
| 50 |
45 49
|
resubcld |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ∈ ℝ ) |
| 51 |
50
|
resqcld |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ∈ ℝ ) |
| 52 |
51
|
recnd |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ∈ ℂ ) |
| 53 |
39 52
|
jca |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ∈ ℂ ∧ ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ∈ ℂ ) ) |
| 54 |
23 40
|
pm3.2i |
⊢ ( 1 ∈ V ∧ 2 ∈ V ) |
| 55 |
54
|
a1i |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 1 ∈ V ∧ 2 ∈ V ) ) |
| 56 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 57 |
56
|
a1i |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → 1 ≠ 2 ) |
| 58 |
12 16 53 55 57
|
sumpr |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → Σ 𝑘 ∈ { 1 , 2 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) |
| 59 |
58
|
fveq2d |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( √ ‘ Σ 𝑘 ∈ { 1 , 2 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) |
| 60 |
59
|
mpoeq3ia |
⊢ ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ { 1 , 2 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) |
| 61 |
8 60
|
eqtri |
⊢ 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) |