| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl2eudis.e | ⊢ 𝐸  =  ( 𝔼hil ‘ 2 ) | 
						
							| 2 |  | ehl2eudis.x | ⊢ 𝑋  =  ( ℝ  ↑m  { 1 ,  2 } ) | 
						
							| 3 |  | ehl2eudis.d | ⊢ 𝐷  =  ( dist ‘ 𝐸 ) | 
						
							| 4 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 5 |  | fz12pr | ⊢ ( 1 ... 2 )  =  { 1 ,  2 } | 
						
							| 6 | 5 | eqcomi | ⊢ { 1 ,  2 }  =  ( 1 ... 2 ) | 
						
							| 7 | 6 1 2 3 | ehleudis | ⊢ ( 2  ∈  ℕ0  →  𝐷  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  { 1 ,  2 } ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 8 | 4 7 | ax-mp | ⊢ 𝐷  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  { 1 ,  2 } ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑓 ‘ 1 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( 𝑔 ‘ 𝑘 )  =  ( 𝑔 ‘ 1 ) ) | 
						
							| 11 | 9 10 | oveq12d | ⊢ ( 𝑘  =  1  →  ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) )  =  ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( 𝑘  =  1  →  ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 )  =  ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑘  =  2  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑓 ‘ 2 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑘  =  2  →  ( 𝑔 ‘ 𝑘 )  =  ( 𝑔 ‘ 2 ) ) | 
						
							| 15 | 13 14 | oveq12d | ⊢ ( 𝑘  =  2  →  ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) )  =  ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑘  =  2  →  ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 )  =  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) | 
						
							| 17 | 2 | eleq2i | ⊢ ( 𝑓  ∈  𝑋  ↔  𝑓  ∈  ( ℝ  ↑m  { 1 ,  2 } ) ) | 
						
							| 18 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 19 |  | prex | ⊢ { 1 ,  2 }  ∈  V | 
						
							| 20 | 18 19 | elmap | ⊢ ( 𝑓  ∈  ( ℝ  ↑m  { 1 ,  2 } )  ↔  𝑓 : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 21 | 17 20 | bitri | ⊢ ( 𝑓  ∈  𝑋  ↔  𝑓 : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 22 |  | id | ⊢ ( 𝑓 : { 1 ,  2 } ⟶ ℝ  →  𝑓 : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 23 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 24 | 23 | prid1 | ⊢ 1  ∈  { 1 ,  2 } | 
						
							| 25 | 24 | a1i | ⊢ ( 𝑓 : { 1 ,  2 } ⟶ ℝ  →  1  ∈  { 1 ,  2 } ) | 
						
							| 26 | 22 25 | ffvelcdmd | ⊢ ( 𝑓 : { 1 ,  2 } ⟶ ℝ  →  ( 𝑓 ‘ 1 )  ∈  ℝ ) | 
						
							| 27 | 21 26 | sylbi | ⊢ ( 𝑓  ∈  𝑋  →  ( 𝑓 ‘ 1 )  ∈  ℝ ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( 𝑓 ‘ 1 )  ∈  ℝ ) | 
						
							| 29 | 2 | eleq2i | ⊢ ( 𝑔  ∈  𝑋  ↔  𝑔  ∈  ( ℝ  ↑m  { 1 ,  2 } ) ) | 
						
							| 30 | 18 19 | elmap | ⊢ ( 𝑔  ∈  ( ℝ  ↑m  { 1 ,  2 } )  ↔  𝑔 : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 31 | 29 30 | bitri | ⊢ ( 𝑔  ∈  𝑋  ↔  𝑔 : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 32 |  | id | ⊢ ( 𝑔 : { 1 ,  2 } ⟶ ℝ  →  𝑔 : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 33 | 24 | a1i | ⊢ ( 𝑔 : { 1 ,  2 } ⟶ ℝ  →  1  ∈  { 1 ,  2 } ) | 
						
							| 34 | 32 33 | ffvelcdmd | ⊢ ( 𝑔 : { 1 ,  2 } ⟶ ℝ  →  ( 𝑔 ‘ 1 )  ∈  ℝ ) | 
						
							| 35 | 31 34 | sylbi | ⊢ ( 𝑔  ∈  𝑋  →  ( 𝑔 ‘ 1 )  ∈  ℝ ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( 𝑔 ‘ 1 )  ∈  ℝ ) | 
						
							| 37 | 28 36 | resubcld | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) )  ∈  ℝ ) | 
						
							| 38 | 37 | resqcld | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 39 | 38 | recnd | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 40 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 41 | 40 | prid2 | ⊢ 2  ∈  { 1 ,  2 } | 
						
							| 42 | 41 | a1i | ⊢ ( 𝑓 : { 1 ,  2 } ⟶ ℝ  →  2  ∈  { 1 ,  2 } ) | 
						
							| 43 | 22 42 | ffvelcdmd | ⊢ ( 𝑓 : { 1 ,  2 } ⟶ ℝ  →  ( 𝑓 ‘ 2 )  ∈  ℝ ) | 
						
							| 44 | 21 43 | sylbi | ⊢ ( 𝑓  ∈  𝑋  →  ( 𝑓 ‘ 2 )  ∈  ℝ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( 𝑓 ‘ 2 )  ∈  ℝ ) | 
						
							| 46 | 41 | a1i | ⊢ ( 𝑔 : { 1 ,  2 } ⟶ ℝ  →  2  ∈  { 1 ,  2 } ) | 
						
							| 47 | 32 46 | ffvelcdmd | ⊢ ( 𝑔 : { 1 ,  2 } ⟶ ℝ  →  ( 𝑔 ‘ 2 )  ∈  ℝ ) | 
						
							| 48 | 31 47 | sylbi | ⊢ ( 𝑔  ∈  𝑋  →  ( 𝑔 ‘ 2 )  ∈  ℝ ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( 𝑔 ‘ 2 )  ∈  ℝ ) | 
						
							| 50 | 45 49 | resubcld | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) )  ∈  ℝ ) | 
						
							| 51 | 50 | resqcld | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 52 | 51 | recnd | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 53 | 39 52 | jca | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  ∈  ℂ  ∧  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 )  ∈  ℂ ) ) | 
						
							| 54 | 23 40 | pm3.2i | ⊢ ( 1  ∈  V  ∧  2  ∈  V ) | 
						
							| 55 | 54 | a1i | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( 1  ∈  V  ∧  2  ∈  V ) ) | 
						
							| 56 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 57 | 56 | a1i | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  1  ≠  2 ) | 
						
							| 58 | 12 16 53 55 57 | sumpr | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  Σ 𝑘  ∈  { 1 ,  2 } ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 )  =  ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) | 
						
							| 59 | 58 | fveq2d | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( √ ‘ Σ 𝑘  ∈  { 1 ,  2 } ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) )  =  ( √ ‘ ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) | 
						
							| 60 | 59 | mpoeq3ia | ⊢ ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  { 1 ,  2 } ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) )  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) | 
						
							| 61 | 8 60 | eqtri | ⊢ 𝐷  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) |