| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumpr.1 |
⊢ ( 𝑘 = 𝐴 → 𝐶 = 𝐷 ) |
| 2 |
|
sumpr.2 |
⊢ ( 𝑘 = 𝐵 → 𝐶 = 𝐸 ) |
| 3 |
|
sumpr.3 |
⊢ ( 𝜑 → ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) ) |
| 4 |
|
sumpr.4 |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) |
| 5 |
|
sumpr.5 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 6 |
|
disjsn2 |
⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
| 8 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) ) |
| 10 |
|
prfi |
⊢ { 𝐴 , 𝐵 } ∈ Fin |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ Fin ) |
| 12 |
1
|
eleq1d |
⊢ ( 𝑘 = 𝐴 → ( 𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ ) ) |
| 13 |
2
|
eleq1d |
⊢ ( 𝑘 = 𝐵 → ( 𝐶 ∈ ℂ ↔ 𝐸 ∈ ℂ ) ) |
| 14 |
12 13
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 ∈ ℂ ↔ ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) ) ) |
| 15 |
4 14
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 ∈ ℂ ↔ ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) ) ) |
| 16 |
3 15
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 ∈ ℂ ) |
| 17 |
16
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 , 𝐵 } ) → 𝐶 ∈ ℂ ) |
| 18 |
7 9 11 17
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) ) |
| 19 |
4
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 20 |
3
|
simpld |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 21 |
1
|
sumsn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
| 22 |
19 20 21
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
| 23 |
4
|
simprd |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 24 |
3
|
simprd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 25 |
2
|
sumsn |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
| 26 |
23 24 25
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
| 27 |
22 26
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) = ( 𝐷 + 𝐸 ) ) |
| 28 |
18 27
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 + 𝐸 ) ) |