| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumtp.e |
⊢ ( 𝑘 = 𝐴 → 𝐷 = 𝐸 ) |
| 2 |
|
sumtp.f |
⊢ ( 𝑘 = 𝐵 → 𝐷 = 𝐹 ) |
| 3 |
|
sumtp.g |
⊢ ( 𝑘 = 𝐶 → 𝐷 = 𝐺 ) |
| 4 |
|
sumtp.c |
⊢ ( 𝜑 → ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) ) |
| 5 |
|
sumtp.v |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ) |
| 6 |
|
sumtp.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 7 |
|
sumtp.2 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) |
| 8 |
|
sumtp.3 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
| 9 |
7
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐴 ) |
| 10 |
8
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
| 11 |
9 10
|
nelprd |
⊢ ( 𝜑 → ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) |
| 12 |
|
disjsn |
⊢ ( ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ↔ ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) |
| 13 |
11 12
|
sylibr |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ) |
| 14 |
|
df-tp |
⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) |
| 16 |
|
tpfi |
⊢ { 𝐴 , 𝐵 , 𝐶 } ∈ Fin |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ∈ Fin ) |
| 18 |
1
|
eleq1d |
⊢ ( 𝑘 = 𝐴 → ( 𝐷 ∈ ℂ ↔ 𝐸 ∈ ℂ ) ) |
| 19 |
2
|
eleq1d |
⊢ ( 𝑘 = 𝐵 → ( 𝐷 ∈ ℂ ↔ 𝐹 ∈ ℂ ) ) |
| 20 |
3
|
eleq1d |
⊢ ( 𝑘 = 𝐶 → ( 𝐷 ∈ ℂ ↔ 𝐺 ∈ ℂ ) ) |
| 21 |
18 19 20
|
raltpg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 ∈ ℂ ↔ ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) ) ) |
| 22 |
5 21
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 ∈ ℂ ↔ ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) ) ) |
| 23 |
4 22
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 ∈ ℂ ) |
| 24 |
23
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → 𝐷 ∈ ℂ ) |
| 25 |
13 15 17 24
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 = ( Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 + Σ 𝑘 ∈ { 𝐶 } 𝐷 ) ) |
| 26 |
|
3simpa |
⊢ ( ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) → ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ) ) |
| 27 |
4 26
|
syl |
⊢ ( 𝜑 → ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ) ) |
| 28 |
|
3simpa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) |
| 29 |
5 28
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) |
| 30 |
1 2 27 29 6
|
sumpr |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 = ( 𝐸 + 𝐹 ) ) |
| 31 |
5
|
simp3d |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
| 32 |
4
|
simp3d |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 33 |
3
|
sumsn |
⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐺 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐶 } 𝐷 = 𝐺 ) |
| 34 |
31 32 33
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐶 } 𝐷 = 𝐺 ) |
| 35 |
30 34
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 + Σ 𝑘 ∈ { 𝐶 } 𝐷 ) = ( ( 𝐸 + 𝐹 ) + 𝐺 ) ) |
| 36 |
25 35
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 = ( ( 𝐸 + 𝐹 ) + 𝐺 ) ) |