Metamath Proof Explorer


Theorem sumtp

Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020)

Ref Expression
Hypotheses sumtp.e ( 𝑘 = 𝐴𝐷 = 𝐸 )
sumtp.f ( 𝑘 = 𝐵𝐷 = 𝐹 )
sumtp.g ( 𝑘 = 𝐶𝐷 = 𝐺 )
sumtp.c ( 𝜑 → ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) )
sumtp.v ( 𝜑 → ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) )
sumtp.1 ( 𝜑𝐴𝐵 )
sumtp.2 ( 𝜑𝐴𝐶 )
sumtp.3 ( 𝜑𝐵𝐶 )
Assertion sumtp ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 = ( ( 𝐸 + 𝐹 ) + 𝐺 ) )

Proof

Step Hyp Ref Expression
1 sumtp.e ( 𝑘 = 𝐴𝐷 = 𝐸 )
2 sumtp.f ( 𝑘 = 𝐵𝐷 = 𝐹 )
3 sumtp.g ( 𝑘 = 𝐶𝐷 = 𝐺 )
4 sumtp.c ( 𝜑 → ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) )
5 sumtp.v ( 𝜑 → ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) )
6 sumtp.1 ( 𝜑𝐴𝐵 )
7 sumtp.2 ( 𝜑𝐴𝐶 )
8 sumtp.3 ( 𝜑𝐵𝐶 )
9 7 necomd ( 𝜑𝐶𝐴 )
10 8 necomd ( 𝜑𝐶𝐵 )
11 9 10 nelprd ( 𝜑 → ¬ 𝐶 ∈ { 𝐴 , 𝐵 } )
12 disjsn ( ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ↔ ¬ 𝐶 ∈ { 𝐴 , 𝐵 } )
13 11 12 sylibr ( 𝜑 → ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ )
14 df-tp { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
15 14 a1i ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) )
16 tpfi { 𝐴 , 𝐵 , 𝐶 } ∈ Fin
17 16 a1i ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ∈ Fin )
18 1 eleq1d ( 𝑘 = 𝐴 → ( 𝐷 ∈ ℂ ↔ 𝐸 ∈ ℂ ) )
19 2 eleq1d ( 𝑘 = 𝐵 → ( 𝐷 ∈ ℂ ↔ 𝐹 ∈ ℂ ) )
20 3 eleq1d ( 𝑘 = 𝐶 → ( 𝐷 ∈ ℂ ↔ 𝐺 ∈ ℂ ) )
21 18 19 20 raltpg ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 ∈ ℂ ↔ ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) ) )
22 5 21 syl ( 𝜑 → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 ∈ ℂ ↔ ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) ) )
23 4 22 mpbird ( 𝜑 → ∀ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 ∈ ℂ )
24 23 r19.21bi ( ( 𝜑𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → 𝐷 ∈ ℂ )
25 13 15 17 24 fsumsplit ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 = ( Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 + Σ 𝑘 ∈ { 𝐶 } 𝐷 ) )
26 3simpa ( ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) → ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ) )
27 4 26 syl ( 𝜑 → ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ) )
28 3simpa ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝐴𝑉𝐵𝑊 ) )
29 5 28 syl ( 𝜑 → ( 𝐴𝑉𝐵𝑊 ) )
30 1 2 27 29 6 sumpr ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 = ( 𝐸 + 𝐹 ) )
31 5 simp3d ( 𝜑𝐶𝑋 )
32 4 simp3d ( 𝜑𝐺 ∈ ℂ )
33 3 sumsn ( ( 𝐶𝑋𝐺 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐶 } 𝐷 = 𝐺 )
34 31 32 33 syl2anc ( 𝜑 → Σ 𝑘 ∈ { 𝐶 } 𝐷 = 𝐺 )
35 30 34 oveq12d ( 𝜑 → ( Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 + Σ 𝑘 ∈ { 𝐶 } 𝐷 ) = ( ( 𝐸 + 𝐹 ) + 𝐺 ) )
36 25 35 eqtrd ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 = ( ( 𝐸 + 𝐹 ) + 𝐺 ) )