Metamath Proof Explorer


Theorem raltpg

Description: Convert a restricted universal quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses ralprg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
ralprg.2 ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
raltpg.3 ( 𝑥 = 𝐶 → ( 𝜑𝜃 ) )
Assertion raltpg ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓𝜒𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 ralprg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 ralprg.2 ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
3 raltpg.3 ( 𝑥 = 𝐶 → ( 𝜑𝜃 ) )
4 1 2 ralprg ( ( 𝐴𝑉𝐵𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓𝜒 ) ) )
5 3 ralsng ( 𝐶𝑋 → ( ∀ 𝑥 ∈ { 𝐶 } 𝜑𝜃 ) )
6 4 5 bi2anan9 ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐶𝑋 ) → ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐶 } 𝜑 ) ↔ ( ( 𝜓𝜒 ) ∧ 𝜃 ) ) )
7 6 3impa ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐶 } 𝜑 ) ↔ ( ( 𝜓𝜒 ) ∧ 𝜃 ) ) )
8 df-tp { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
9 8 raleqi ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ∀ 𝑥 ∈ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) 𝜑 )
10 ralunb ( ∀ 𝑥 ∈ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) 𝜑 ↔ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐶 } 𝜑 ) )
11 9 10 bitri ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐶 } 𝜑 ) )
12 df-3an ( ( 𝜓𝜒𝜃 ) ↔ ( ( 𝜓𝜒 ) ∧ 𝜃 ) )
13 7 11 12 3bitr4g ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓𝜒𝜃 ) ) )