Metamath Proof Explorer
		
		
		
		Description:  Equality inference for restricted universal quantifier.  (Contributed by Paul Chapman, 22-Jun-2011)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypothesis | 
						raleq1i.1 | 
						⊢ 𝐴  =  𝐵  | 
					
				
					 | 
					Assertion | 
					raleqi | 
					⊢  ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥  ∈  𝐵 𝜑 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							raleq1i.1 | 
							⊢ 𝐴  =  𝐵  | 
						
						
							| 2 | 
							
								
							 | 
							raleq | 
							⊢ ( 𝐴  =  𝐵  →  ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥  ∈  𝐵 𝜑 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥  ∈  𝐵 𝜑 )  |