Metamath Proof Explorer
		
		
		
		Description:  Equality inference for restricted existential quantifier.  (Contributed by Mario Carneiro, 23-Apr-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | raleq1i.1 | ⊢ 𝐴  =  𝐵 | 
				
					|  | Assertion | rexeqi | ⊢  ( ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∃ 𝑥  ∈  𝐵 𝜑 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | raleq1i.1 | ⊢ 𝐴  =  𝐵 | 
						
							| 2 |  | rexeq | ⊢ ( 𝐴  =  𝐵  →  ( ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∃ 𝑥  ∈  𝐵 𝜑 ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∃ 𝑥  ∈  𝐵 𝜑 ) |