Metamath Proof Explorer


Theorem prfi

Description: An unordered pair is finite. (Contributed by NM, 22-Aug-2008)

Ref Expression
Assertion prfi { 𝐴 , 𝐵 } ∈ Fin

Proof

Step Hyp Ref Expression
1 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
2 snfi { 𝐴 } ∈ Fin
3 snfi { 𝐵 } ∈ Fin
4 unfi ( ( { 𝐴 } ∈ Fin ∧ { 𝐵 } ∈ Fin ) → ( { 𝐴 } ∪ { 𝐵 } ) ∈ Fin )
5 2 3 4 mp2an ( { 𝐴 } ∪ { 𝐵 } ) ∈ Fin
6 1 5 eqeltri { 𝐴 , 𝐵 } ∈ Fin