| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl2eudis.e | ⊢ 𝐸  =  ( 𝔼hil ‘ 2 ) | 
						
							| 2 |  | ehl2eudis.x | ⊢ 𝑋  =  ( ℝ  ↑m  { 1 ,  2 } ) | 
						
							| 3 |  | ehl2eudis.d | ⊢ 𝐷  =  ( dist ‘ 𝐸 ) | 
						
							| 4 | 1 2 3 | ehl2eudis | ⊢ 𝐷  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) | 
						
							| 5 | 4 | oveqi | ⊢ ( 𝐹 𝐷 𝐺 )  =  ( 𝐹 ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) 𝐺 ) | 
						
							| 6 |  | eqidd | ⊢ ( ( 𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) )  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 8 |  | fveq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔 ‘ 1 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 9 | 7 8 | oveqan12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) )  =  ( ( 𝐹 ‘ 1 )  −  ( 𝐺 ‘ 1 ) ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  =  ( ( ( 𝐹 ‘ 1 )  −  ( 𝐺 ‘ 1 ) ) ↑ 2 ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 2 )  =  ( 𝐹 ‘ 2 ) ) | 
						
							| 12 |  | fveq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔 ‘ 2 )  =  ( 𝐺 ‘ 2 ) ) | 
						
							| 13 | 11 12 | oveqan12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) )  =  ( ( 𝐹 ‘ 2 )  −  ( 𝐺 ‘ 2 ) ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 )  =  ( ( ( 𝐹 ‘ 2 )  −  ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) | 
						
							| 15 | 10 14 | oveq12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) )  =  ( ( ( ( 𝐹 ‘ 1 )  −  ( 𝐺 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝐹 ‘ 2 )  −  ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( √ ‘ ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) )  =  ( √ ‘ ( ( ( ( 𝐹 ‘ 1 )  −  ( 𝐺 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝐹 ‘ 2 )  −  ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  ∧  ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 ) )  →  ( √ ‘ ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) )  =  ( √ ‘ ( ( ( ( 𝐹 ‘ 1 )  −  ( 𝐺 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝐹 ‘ 2 )  −  ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) ) ) | 
						
							| 18 |  | simpl | ⊢ ( ( 𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  𝐹  ∈  𝑋 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  𝐺  ∈  𝑋 ) | 
						
							| 20 |  | fvexd | ⊢ ( ( 𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( √ ‘ ( ( ( ( 𝐹 ‘ 1 )  −  ( 𝐺 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝐹 ‘ 2 )  −  ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) )  ∈  V ) | 
						
							| 21 | 6 17 18 19 20 | ovmpod | ⊢ ( ( 𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( 𝐹 ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ ( ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑓 ‘ 2 )  −  ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) 𝐺 )  =  ( √ ‘ ( ( ( ( 𝐹 ‘ 1 )  −  ( 𝐺 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝐹 ‘ 2 )  −  ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) ) ) | 
						
							| 22 | 5 21 | eqtrid | ⊢ ( ( 𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( 𝐹 𝐷 𝐺 )  =  ( √ ‘ ( ( ( ( 𝐹 ‘ 1 )  −  ( 𝐺 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝐹 ‘ 2 )  −  ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) ) ) |