| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl2eudis.e |  |-  E = ( EEhil ` 2 ) | 
						
							| 2 |  | ehl2eudis.x |  |-  X = ( RR ^m { 1 , 2 } ) | 
						
							| 3 |  | ehl2eudis.d |  |-  D = ( dist ` E ) | 
						
							| 4 | 1 2 3 | ehl2eudis |  |-  D = ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) | 
						
							| 5 | 4 | oveqi |  |-  ( F D G ) = ( F ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) G ) | 
						
							| 6 |  | eqidd |  |-  ( ( F e. X /\ G e. X ) -> ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) = ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) ) | 
						
							| 7 |  | fveq1 |  |-  ( f = F -> ( f ` 1 ) = ( F ` 1 ) ) | 
						
							| 8 |  | fveq1 |  |-  ( g = G -> ( g ` 1 ) = ( G ` 1 ) ) | 
						
							| 9 | 7 8 | oveqan12d |  |-  ( ( f = F /\ g = G ) -> ( ( f ` 1 ) - ( g ` 1 ) ) = ( ( F ` 1 ) - ( G ` 1 ) ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( f = F /\ g = G ) -> ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) = ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) ) | 
						
							| 11 |  | fveq1 |  |-  ( f = F -> ( f ` 2 ) = ( F ` 2 ) ) | 
						
							| 12 |  | fveq1 |  |-  ( g = G -> ( g ` 2 ) = ( G ` 2 ) ) | 
						
							| 13 | 11 12 | oveqan12d |  |-  ( ( f = F /\ g = G ) -> ( ( f ` 2 ) - ( g ` 2 ) ) = ( ( F ` 2 ) - ( G ` 2 ) ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( f = F /\ g = G ) -> ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) = ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) | 
						
							| 15 | 10 14 | oveq12d |  |-  ( ( f = F /\ g = G ) -> ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) = ( ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( ( f = F /\ g = G ) -> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( F e. X /\ G e. X ) /\ ( f = F /\ g = G ) ) -> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) ) ) | 
						
							| 18 |  | simpl |  |-  ( ( F e. X /\ G e. X ) -> F e. X ) | 
						
							| 19 |  | simpr |  |-  ( ( F e. X /\ G e. X ) -> G e. X ) | 
						
							| 20 |  | fvexd |  |-  ( ( F e. X /\ G e. X ) -> ( sqrt ` ( ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) ) e. _V ) | 
						
							| 21 | 6 17 18 19 20 | ovmpod |  |-  ( ( F e. X /\ G e. X ) -> ( F ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) G ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) ) ) | 
						
							| 22 | 5 21 | eqtrid |  |-  ( ( F e. X /\ G e. X ) -> ( F D G ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) ) ) |