| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ehl2eudis.e |
|- E = ( EEhil ` 2 ) |
| 2 |
|
ehl2eudis.x |
|- X = ( RR ^m { 1 , 2 } ) |
| 3 |
|
ehl2eudis.d |
|- D = ( dist ` E ) |
| 4 |
1 2 3
|
ehl2eudis |
|- D = ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) |
| 5 |
4
|
oveqi |
|- ( F D G ) = ( F ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) G ) |
| 6 |
|
eqidd |
|- ( ( F e. X /\ G e. X ) -> ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) = ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) ) |
| 7 |
|
fveq1 |
|- ( f = F -> ( f ` 1 ) = ( F ` 1 ) ) |
| 8 |
|
fveq1 |
|- ( g = G -> ( g ` 1 ) = ( G ` 1 ) ) |
| 9 |
7 8
|
oveqan12d |
|- ( ( f = F /\ g = G ) -> ( ( f ` 1 ) - ( g ` 1 ) ) = ( ( F ` 1 ) - ( G ` 1 ) ) ) |
| 10 |
9
|
oveq1d |
|- ( ( f = F /\ g = G ) -> ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) = ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) ) |
| 11 |
|
fveq1 |
|- ( f = F -> ( f ` 2 ) = ( F ` 2 ) ) |
| 12 |
|
fveq1 |
|- ( g = G -> ( g ` 2 ) = ( G ` 2 ) ) |
| 13 |
11 12
|
oveqan12d |
|- ( ( f = F /\ g = G ) -> ( ( f ` 2 ) - ( g ` 2 ) ) = ( ( F ` 2 ) - ( G ` 2 ) ) ) |
| 14 |
13
|
oveq1d |
|- ( ( f = F /\ g = G ) -> ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) = ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) |
| 15 |
10 14
|
oveq12d |
|- ( ( f = F /\ g = G ) -> ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) = ( ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) ) |
| 16 |
15
|
fveq2d |
|- ( ( f = F /\ g = G ) -> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) ) ) |
| 17 |
16
|
adantl |
|- ( ( ( F e. X /\ G e. X ) /\ ( f = F /\ g = G ) ) -> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) ) ) |
| 18 |
|
simpl |
|- ( ( F e. X /\ G e. X ) -> F e. X ) |
| 19 |
|
simpr |
|- ( ( F e. X /\ G e. X ) -> G e. X ) |
| 20 |
|
fvexd |
|- ( ( F e. X /\ G e. X ) -> ( sqrt ` ( ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) ) e. _V ) |
| 21 |
6 17 18 19 20
|
ovmpod |
|- ( ( F e. X /\ G e. X ) -> ( F ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) G ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) ) ) |
| 22 |
5 21
|
eqtrid |
|- ( ( F e. X /\ G e. X ) -> ( F D G ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( G ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( G ` 2 ) ) ^ 2 ) ) ) ) |