| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl1eudis.e | ⊢ 𝐸  =  ( 𝔼hil ‘ 1 ) | 
						
							| 2 |  | ehl1eudis.x | ⊢ 𝑋  =  ( ℝ  ↑m  { 1 } ) | 
						
							| 3 |  | ehl1eudis.d | ⊢ 𝐷  =  ( dist ‘ 𝐸 ) | 
						
							| 4 |  | fveq1 | ⊢ ( 𝑥  =  𝐹  →  ( 𝑥 ‘ 1 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 5 | 4 | fvoveq1d | ⊢ ( 𝑥  =  𝐹  →  ( abs ‘ ( ( 𝑥 ‘ 1 )  −  ( 𝑦 ‘ 1 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝑦 ‘ 1 ) ) ) ) | 
						
							| 6 |  | fveq1 | ⊢ ( 𝑦  =  𝐺  →  ( 𝑦 ‘ 1 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑦  =  𝐺  →  ( ( 𝐹 ‘ 1 )  −  ( 𝑦 ‘ 1 ) )  =  ( ( 𝐹 ‘ 1 )  −  ( 𝐺 ‘ 1 ) ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑦  =  𝐺  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝑦 ‘ 1 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐺 ‘ 1 ) ) ) ) | 
						
							| 9 | 1 2 3 | ehl1eudis | ⊢ 𝐷  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( abs ‘ ( ( 𝑥 ‘ 1 )  −  ( 𝑦 ‘ 1 ) ) ) ) | 
						
							| 10 |  | fvex | ⊢ ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐺 ‘ 1 ) ) )  ∈  V | 
						
							| 11 | 5 8 9 10 | ovmpo | ⊢ ( ( 𝐹  ∈  𝑋  ∧  𝐺  ∈  𝑋 )  →  ( 𝐹 𝐷 𝐺 )  =  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐺 ‘ 1 ) ) ) ) |