| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl1eudis.e | ⊢ 𝐸  =  ( 𝔼hil ‘ 1 ) | 
						
							| 2 |  | ehl1eudis.x | ⊢ 𝑋  =  ( ℝ  ↑m  { 1 } ) | 
						
							| 3 |  | ehl1eudis.d | ⊢ 𝐷  =  ( dist ‘ 𝐸 ) | 
						
							| 4 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 5 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 6 |  | fzsn | ⊢ ( 1  ∈  ℤ  →  ( 1 ... 1 )  =  { 1 } ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( 1 ... 1 )  =  { 1 } | 
						
							| 8 | 7 | eqcomi | ⊢ { 1 }  =  ( 1 ... 1 ) | 
						
							| 9 | 8 1 2 3 | ehleudis | ⊢ ( 1  ∈  ℕ0  →  𝐷  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  { 1 } ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 10 | 4 9 | ax-mp | ⊢ 𝐷  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  { 1 } ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) | 
						
							| 11 | 2 | eleq2i | ⊢ ( 𝑓  ∈  𝑋  ↔  𝑓  ∈  ( ℝ  ↑m  { 1 } ) ) | 
						
							| 12 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 13 |  | snex | ⊢ { 1 }  ∈  V | 
						
							| 14 | 12 13 | elmap | ⊢ ( 𝑓  ∈  ( ℝ  ↑m  { 1 } )  ↔  𝑓 : { 1 } ⟶ ℝ ) | 
						
							| 15 | 11 14 | bitri | ⊢ ( 𝑓  ∈  𝑋  ↔  𝑓 : { 1 } ⟶ ℝ ) | 
						
							| 16 |  | id | ⊢ ( 𝑓 : { 1 } ⟶ ℝ  →  𝑓 : { 1 } ⟶ ℝ ) | 
						
							| 17 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 18 | 17 | snid | ⊢ 1  ∈  { 1 } | 
						
							| 19 | 18 | a1i | ⊢ ( 𝑓 : { 1 } ⟶ ℝ  →  1  ∈  { 1 } ) | 
						
							| 20 | 16 19 | ffvelcdmd | ⊢ ( 𝑓 : { 1 } ⟶ ℝ  →  ( 𝑓 ‘ 1 )  ∈  ℝ ) | 
						
							| 21 | 15 20 | sylbi | ⊢ ( 𝑓  ∈  𝑋  →  ( 𝑓 ‘ 1 )  ∈  ℝ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( 𝑓 ‘ 1 )  ∈  ℝ ) | 
						
							| 23 | 2 | eleq2i | ⊢ ( 𝑔  ∈  𝑋  ↔  𝑔  ∈  ( ℝ  ↑m  { 1 } ) ) | 
						
							| 24 | 12 13 | elmap | ⊢ ( 𝑔  ∈  ( ℝ  ↑m  { 1 } )  ↔  𝑔 : { 1 } ⟶ ℝ ) | 
						
							| 25 | 23 24 | bitri | ⊢ ( 𝑔  ∈  𝑋  ↔  𝑔 : { 1 } ⟶ ℝ ) | 
						
							| 26 |  | id | ⊢ ( 𝑔 : { 1 } ⟶ ℝ  →  𝑔 : { 1 } ⟶ ℝ ) | 
						
							| 27 | 18 | a1i | ⊢ ( 𝑔 : { 1 } ⟶ ℝ  →  1  ∈  { 1 } ) | 
						
							| 28 | 26 27 | ffvelcdmd | ⊢ ( 𝑔 : { 1 } ⟶ ℝ  →  ( 𝑔 ‘ 1 )  ∈  ℝ ) | 
						
							| 29 | 25 28 | sylbi | ⊢ ( 𝑔  ∈  𝑋  →  ( 𝑔 ‘ 1 )  ∈  ℝ ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( 𝑔 ‘ 1 )  ∈  ℝ ) | 
						
							| 31 | 22 30 | resubcld | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) )  ∈  ℝ ) | 
						
							| 32 | 31 | resqcld | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 33 | 32 | recnd | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑓 ‘ 1 ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( 𝑔 ‘ 𝑘 )  =  ( 𝑔 ‘ 1 ) ) | 
						
							| 36 | 34 35 | oveq12d | ⊢ ( 𝑘  =  1  →  ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) )  =  ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ) | 
						
							| 37 | 36 | oveq1d | ⊢ ( 𝑘  =  1  →  ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 )  =  ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) | 
						
							| 38 | 37 | sumsn | ⊢ ( ( 1  ∈  ℤ  ∧  ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 )  ∈  ℂ )  →  Σ 𝑘  ∈  { 1 } ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 )  =  ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) | 
						
							| 39 | 5 33 38 | sylancr | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  Σ 𝑘  ∈  { 1 } ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 )  =  ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( √ ‘ Σ 𝑘  ∈  { 1 } ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) )  =  ( √ ‘ ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) ) | 
						
							| 41 | 31 | absred | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( abs ‘ ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) )  =  ( √ ‘ ( ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) ) | 
						
							| 42 | 40 41 | eqtr4d | ⊢ ( ( 𝑓  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( √ ‘ Σ 𝑘  ∈  { 1 } ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) )  =  ( abs ‘ ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ) ) | 
						
							| 43 | 42 | mpoeq3ia | ⊢ ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( √ ‘ Σ 𝑘  ∈  { 1 } ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) )  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( abs ‘ ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ) ) | 
						
							| 44 | 10 43 | eqtri | ⊢ 𝐷  =  ( 𝑓  ∈  𝑋 ,  𝑔  ∈  𝑋  ↦  ( abs ‘ ( ( 𝑓 ‘ 1 )  −  ( 𝑔 ‘ 1 ) ) ) ) |