Description: Value of the Euclidean space of dimension N . (Contributed by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ehlval.e | |- E = ( EEhil ` N ) | |
| Assertion | ehlval | |- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ehlval.e | |- E = ( EEhil ` N ) | |
| 2 | oveq2 | |- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) | |
| 3 | 2 | fveq2d | |- ( n = N -> ( RR^ ` ( 1 ... n ) ) = ( RR^ ` ( 1 ... N ) ) ) | 
| 4 | df-ehl | |- EEhil = ( n e. NN0 |-> ( RR^ ` ( 1 ... n ) ) ) | |
| 5 | fvex | |- ( RR^ ` ( 1 ... N ) ) e. _V | |
| 6 | 3 4 5 | fvmpt | |- ( N e. NN0 -> ( EEhil ` N ) = ( RR^ ` ( 1 ... N ) ) ) | 
| 7 | 1 6 | eqtrid | |- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) |