Description: Value of the Euclidean space of dimension N . (Contributed by Thierry Arnoux, 16-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ehlval.e | |- E = ( EEhil ` N ) |
|
Assertion | ehlval | |- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehlval.e | |- E = ( EEhil ` N ) |
|
2 | oveq2 | |- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
|
3 | 2 | fveq2d | |- ( n = N -> ( RR^ ` ( 1 ... n ) ) = ( RR^ ` ( 1 ... N ) ) ) |
4 | df-ehl | |- EEhil = ( n e. NN0 |-> ( RR^ ` ( 1 ... n ) ) ) |
|
5 | fvex | |- ( RR^ ` ( 1 ... N ) ) e. _V |
|
6 | 3 4 5 | fvmpt | |- ( N e. NN0 -> ( EEhil ` N ) = ( RR^ ` ( 1 ... N ) ) ) |
7 | 1 6 | eqtrid | |- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) |