| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehlval.e |  |-  E = ( EEhil ` N ) | 
						
							| 2 |  | rabid2 |  |-  ( ( RR ^m ( 1 ... N ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } <-> A. f e. ( RR ^m ( 1 ... N ) ) f finSupp 0 ) | 
						
							| 3 |  | elmapi |  |-  ( f e. ( RR ^m ( 1 ... N ) ) -> f : ( 1 ... N ) --> RR ) | 
						
							| 4 |  | fzfid |  |-  ( f e. ( RR ^m ( 1 ... N ) ) -> ( 1 ... N ) e. Fin ) | 
						
							| 5 |  | 0red |  |-  ( f e. ( RR ^m ( 1 ... N ) ) -> 0 e. RR ) | 
						
							| 6 | 3 4 5 | fdmfifsupp |  |-  ( f e. ( RR ^m ( 1 ... N ) ) -> f finSupp 0 ) | 
						
							| 7 | 2 6 | mprgbir |  |-  ( RR ^m ( 1 ... N ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } | 
						
							| 8 |  | ovex |  |-  ( 1 ... N ) e. _V | 
						
							| 9 |  | eqid |  |-  ( RR^ ` ( 1 ... N ) ) = ( RR^ ` ( 1 ... N ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` ( RR^ ` ( 1 ... N ) ) ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) | 
						
							| 11 | 9 10 | rrxbase |  |-  ( ( 1 ... N ) e. _V -> ( Base ` ( RR^ ` ( 1 ... N ) ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } ) | 
						
							| 12 | 8 11 | ax-mp |  |-  ( Base ` ( RR^ ` ( 1 ... N ) ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } | 
						
							| 13 | 7 12 | eqtr4i |  |-  ( RR ^m ( 1 ... N ) ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) | 
						
							| 14 | 1 | ehlval |  |-  ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) | 
						
							| 15 | 14 | fveq2d |  |-  ( N e. NN0 -> ( Base ` E ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) ) | 
						
							| 16 | 13 15 | eqtr4id |  |-  ( N e. NN0 -> ( RR ^m ( 1 ... N ) ) = ( Base ` E ) ) |