| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehlval.e | ⊢ 𝐸  =  ( 𝔼hil ‘ 𝑁 ) | 
						
							| 2 |  | rabid2 | ⊢ ( ( ℝ  ↑m  ( 1 ... 𝑁 ) )  =  { 𝑓  ∈  ( ℝ  ↑m  ( 1 ... 𝑁 ) )  ∣  𝑓  finSupp  0 }  ↔  ∀ 𝑓  ∈  ( ℝ  ↑m  ( 1 ... 𝑁 ) ) 𝑓  finSupp  0 ) | 
						
							| 3 |  | elmapi | ⊢ ( 𝑓  ∈  ( ℝ  ↑m  ( 1 ... 𝑁 ) )  →  𝑓 : ( 1 ... 𝑁 ) ⟶ ℝ ) | 
						
							| 4 |  | fzfid | ⊢ ( 𝑓  ∈  ( ℝ  ↑m  ( 1 ... 𝑁 ) )  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 5 |  | 0red | ⊢ ( 𝑓  ∈  ( ℝ  ↑m  ( 1 ... 𝑁 ) )  →  0  ∈  ℝ ) | 
						
							| 6 | 3 4 5 | fdmfifsupp | ⊢ ( 𝑓  ∈  ( ℝ  ↑m  ( 1 ... 𝑁 ) )  →  𝑓  finSupp  0 ) | 
						
							| 7 | 2 6 | mprgbir | ⊢ ( ℝ  ↑m  ( 1 ... 𝑁 ) )  =  { 𝑓  ∈  ( ℝ  ↑m  ( 1 ... 𝑁 ) )  ∣  𝑓  finSupp  0 } | 
						
							| 8 |  | ovex | ⊢ ( 1 ... 𝑁 )  ∈  V | 
						
							| 9 |  | eqid | ⊢ ( ℝ^ ‘ ( 1 ... 𝑁 ) )  =  ( ℝ^ ‘ ( 1 ... 𝑁 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) )  =  ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 11 | 9 10 | rrxbase | ⊢ ( ( 1 ... 𝑁 )  ∈  V  →  ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) )  =  { 𝑓  ∈  ( ℝ  ↑m  ( 1 ... 𝑁 ) )  ∣  𝑓  finSupp  0 } ) | 
						
							| 12 | 8 11 | ax-mp | ⊢ ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) )  =  { 𝑓  ∈  ( ℝ  ↑m  ( 1 ... 𝑁 ) )  ∣  𝑓  finSupp  0 } | 
						
							| 13 | 7 12 | eqtr4i | ⊢ ( ℝ  ↑m  ( 1 ... 𝑁 ) )  =  ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 14 | 1 | ehlval | ⊢ ( 𝑁  ∈  ℕ0  →  𝐸  =  ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( Base ‘ 𝐸 )  =  ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 16 | 13 15 | eqtr4id | ⊢ ( 𝑁  ∈  ℕ0  →  ( ℝ  ↑m  ( 1 ... 𝑁 ) )  =  ( Base ‘ 𝐸 ) ) |