Metamath Proof Explorer


Theorem ehlbase

Description: The base of the Euclidean space is the set of n-tuples of real numbers. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ehlval.e E=𝔼hilN
Assertion ehlbase N01N=BaseE

Proof

Step Hyp Ref Expression
1 ehlval.e E=𝔼hilN
2 rabid2 1N=f1N|finSupp0ff1NfinSupp0f
3 elmapi f1Nf:1N
4 fzfid f1N1NFin
5 0red f1N0
6 3 4 5 fdmfifsupp f1NfinSupp0f
7 2 6 mprgbir 1N=f1N|finSupp0f
8 ovex 1NV
9 eqid msup=msup
10 eqid Basemsup=Basemsup
11 9 10 rrxbase 1NVBasemsup=f1N|finSupp0f
12 8 11 ax-mp Basemsup=f1N|finSupp0f
13 7 12 eqtr4i 1N=Basemsup
14 1 ehlval N0E=msup
15 14 fveq2d N0BaseE=Basemsup
16 13 15 eqtr4id N01N=BaseE