| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxsca.r |  |-  H = ( RR^ ` I ) | 
						
							| 2 |  | rrx0.0 |  |-  .0. = ( I X. { 0 } ) | 
						
							| 3 | 1 | rrxval |  |-  ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( I e. V -> ( 0g ` H ) = ( 0g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 5 |  | eqid |  |-  ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) | 
						
							| 7 |  | eqid |  |-  ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( RRfld freeLMod I ) ) | 
						
							| 8 | 5 6 7 | tcphval |  |-  ( toCPreHil ` ( RRfld freeLMod I ) ) = ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) | 
						
							| 9 | 8 | a1i |  |-  ( I e. V -> ( toCPreHil ` ( RRfld freeLMod I ) ) = ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( I e. V -> ( 0g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( 0g ` ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) ) ) | 
						
							| 11 |  | fvexd |  |-  ( I e. V -> ( Base ` ( RRfld freeLMod I ) ) e. _V ) | 
						
							| 12 | 11 | mptexd |  |-  ( I e. V -> ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) e. _V ) | 
						
							| 13 |  | eqid |  |-  ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) = ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) | 
						
							| 14 |  | eqid |  |-  ( 0g ` ( RRfld freeLMod I ) ) = ( 0g ` ( RRfld freeLMod I ) ) | 
						
							| 15 | 13 14 | tng0 |  |-  ( ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) e. _V -> ( 0g ` ( RRfld freeLMod I ) ) = ( 0g ` ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) ) ) | 
						
							| 16 | 12 15 | syl |  |-  ( I e. V -> ( 0g ` ( RRfld freeLMod I ) ) = ( 0g ` ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) ) ) | 
						
							| 17 |  | refld |  |-  RRfld e. Field | 
						
							| 18 |  | isfld |  |-  ( RRfld e. Field <-> ( RRfld e. DivRing /\ RRfld e. CRing ) ) | 
						
							| 19 |  | drngring |  |-  ( RRfld e. DivRing -> RRfld e. Ring ) | 
						
							| 20 | 19 | adantr |  |-  ( ( RRfld e. DivRing /\ RRfld e. CRing ) -> RRfld e. Ring ) | 
						
							| 21 | 18 20 | sylbi |  |-  ( RRfld e. Field -> RRfld e. Ring ) | 
						
							| 22 | 17 21 | ax-mp |  |-  RRfld e. Ring | 
						
							| 23 |  | eqid |  |-  ( RRfld freeLMod I ) = ( RRfld freeLMod I ) | 
						
							| 24 |  | re0g |  |-  0 = ( 0g ` RRfld ) | 
						
							| 25 | 23 24 | frlm0 |  |-  ( ( RRfld e. Ring /\ I e. V ) -> ( I X. { 0 } ) = ( 0g ` ( RRfld freeLMod I ) ) ) | 
						
							| 26 | 22 25 | mpan |  |-  ( I e. V -> ( I X. { 0 } ) = ( 0g ` ( RRfld freeLMod I ) ) ) | 
						
							| 27 | 2 26 | eqtr2id |  |-  ( I e. V -> ( 0g ` ( RRfld freeLMod I ) ) = .0. ) | 
						
							| 28 | 10 16 27 | 3eqtr2d |  |-  ( I e. V -> ( 0g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = .0. ) | 
						
							| 29 | 4 28 | eqtrd |  |-  ( I e. V -> ( 0g ` H ) = .0. ) |