| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx0el.0 |  |-  .0. = ( I X. { 0 } ) | 
						
							| 2 |  | rrx0el.p |  |-  P = ( RR ^m I ) | 
						
							| 3 |  | c0ex |  |-  0 e. _V | 
						
							| 4 | 3 | fconst |  |-  ( I X. { 0 } ) : I --> { 0 } | 
						
							| 5 | 4 | a1i |  |-  ( I e. V -> ( I X. { 0 } ) : I --> { 0 } ) | 
						
							| 6 |  | 0re |  |-  0 e. RR | 
						
							| 7 |  | snssg |  |-  ( 0 e. RR -> ( 0 e. RR <-> { 0 } C_ RR ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( 0 e. RR <-> { 0 } C_ RR ) | 
						
							| 9 | 6 8 | mpbi |  |-  { 0 } C_ RR | 
						
							| 10 | 9 | a1i |  |-  ( I e. V -> { 0 } C_ RR ) | 
						
							| 11 | 5 10 | fssd |  |-  ( I e. V -> ( I X. { 0 } ) : I --> RR ) | 
						
							| 12 |  | reex |  |-  RR e. _V | 
						
							| 13 | 12 | a1i |  |-  ( I e. V -> RR e. _V ) | 
						
							| 14 |  | id |  |-  ( I e. V -> I e. V ) | 
						
							| 15 | 13 14 | elmapd |  |-  ( I e. V -> ( ( I X. { 0 } ) e. ( RR ^m I ) <-> ( I X. { 0 } ) : I --> RR ) ) | 
						
							| 16 | 11 15 | mpbird |  |-  ( I e. V -> ( I X. { 0 } ) e. ( RR ^m I ) ) | 
						
							| 17 | 16 1 2 | 3eltr4g |  |-  ( I e. V -> .0. e. P ) |