| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbrn.1 |  |-  ( ph -> A e. Fin ) | 
						
							| 2 |  | csbrn.2 |  |-  ( ( ph /\ k e. A ) -> B e. RR ) | 
						
							| 3 |  | csbrn.3 |  |-  ( ( ph /\ k e. A ) -> C e. RR ) | 
						
							| 4 |  | 2cn |  |-  2 e. CC | 
						
							| 5 | 2 3 | remulcld |  |-  ( ( ph /\ k e. A ) -> ( B x. C ) e. RR ) | 
						
							| 6 | 1 5 | fsumrecl |  |-  ( ph -> sum_ k e. A ( B x. C ) e. RR ) | 
						
							| 7 | 6 | recnd |  |-  ( ph -> sum_ k e. A ( B x. C ) e. CC ) | 
						
							| 8 |  | sqmul |  |-  ( ( 2 e. CC /\ sum_ k e. A ( B x. C ) e. CC ) -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) ) | 
						
							| 9 | 4 7 8 | sylancr |  |-  ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) ) | 
						
							| 10 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 11 | 10 | oveq1i |  |-  ( ( 2 ^ 2 ) x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) = ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) | 
						
							| 12 | 9 11 | eqtrdi |  |-  ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) = ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) ) | 
						
							| 13 | 2 | resqcld |  |-  ( ( ph /\ k e. A ) -> ( B ^ 2 ) e. RR ) | 
						
							| 14 | 1 13 | fsumrecl |  |-  ( ph -> sum_ k e. A ( B ^ 2 ) e. RR ) | 
						
							| 15 |  | 2re |  |-  2 e. RR | 
						
							| 16 |  | remulcl |  |-  ( ( 2 e. RR /\ sum_ k e. A ( B x. C ) e. RR ) -> ( 2 x. sum_ k e. A ( B x. C ) ) e. RR ) | 
						
							| 17 | 15 6 16 | sylancr |  |-  ( ph -> ( 2 x. sum_ k e. A ( B x. C ) ) e. RR ) | 
						
							| 18 | 3 | resqcld |  |-  ( ( ph /\ k e. A ) -> ( C ^ 2 ) e. RR ) | 
						
							| 19 | 1 18 | fsumrecl |  |-  ( ph -> sum_ k e. A ( C ^ 2 ) e. RR ) | 
						
							| 20 | 1 | adantr |  |-  ( ( ph /\ x e. RR ) -> A e. Fin ) | 
						
							| 21 | 13 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B ^ 2 ) e. RR ) | 
						
							| 22 |  | simplr |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> x e. RR ) | 
						
							| 23 | 22 | resqcld |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( x ^ 2 ) e. RR ) | 
						
							| 24 | 21 23 | remulcld |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B ^ 2 ) x. ( x ^ 2 ) ) e. RR ) | 
						
							| 25 |  | remulcl |  |-  ( ( 2 e. RR /\ ( B x. C ) e. RR ) -> ( 2 x. ( B x. C ) ) e. RR ) | 
						
							| 26 | 15 5 25 | sylancr |  |-  ( ( ph /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. RR ) | 
						
							| 27 | 26 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. RR ) | 
						
							| 28 | 27 22 | remulcld |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( 2 x. ( B x. C ) ) x. x ) e. RR ) | 
						
							| 29 | 24 28 | readdcld |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) e. RR ) | 
						
							| 30 | 18 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( C ^ 2 ) e. RR ) | 
						
							| 31 | 29 30 | readdcld |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) e. RR ) | 
						
							| 32 | 2 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> B e. RR ) | 
						
							| 33 | 32 22 | remulcld |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. x ) e. RR ) | 
						
							| 34 | 3 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> C e. RR ) | 
						
							| 35 | 33 34 | readdcld |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B x. x ) + C ) e. RR ) | 
						
							| 36 | 35 | sqge0d |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> 0 <_ ( ( ( B x. x ) + C ) ^ 2 ) ) | 
						
							| 37 | 33 | recnd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. x ) e. CC ) | 
						
							| 38 | 34 | recnd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> C e. CC ) | 
						
							| 39 |  | binom2 |  |-  ( ( ( B x. x ) e. CC /\ C e. CC ) -> ( ( ( B x. x ) + C ) ^ 2 ) = ( ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) + ( C ^ 2 ) ) ) | 
						
							| 40 | 37 38 39 | syl2anc |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B x. x ) + C ) ^ 2 ) = ( ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) + ( C ^ 2 ) ) ) | 
						
							| 41 | 32 | recnd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> B e. CC ) | 
						
							| 42 | 22 | recnd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> x e. CC ) | 
						
							| 43 | 41 42 | sqmuld |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B x. x ) ^ 2 ) = ( ( B ^ 2 ) x. ( x ^ 2 ) ) ) | 
						
							| 44 | 41 42 38 | mul32d |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B x. x ) x. C ) = ( ( B x. C ) x. x ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( ( B x. x ) x. C ) ) = ( 2 x. ( ( B x. C ) x. x ) ) ) | 
						
							| 46 |  | 2cnd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> 2 e. CC ) | 
						
							| 47 | 5 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. C ) e. RR ) | 
						
							| 48 | 47 | recnd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. C ) e. CC ) | 
						
							| 49 | 46 48 42 | mulassd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( 2 x. ( B x. C ) ) x. x ) = ( 2 x. ( ( B x. C ) x. x ) ) ) | 
						
							| 50 | 45 49 | eqtr4d |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( ( B x. x ) x. C ) ) = ( ( 2 x. ( B x. C ) ) x. x ) ) | 
						
							| 51 | 43 50 | oveq12d |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) = ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) + ( C ^ 2 ) ) = ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) | 
						
							| 53 | 40 52 | eqtrd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B x. x ) + C ) ^ 2 ) = ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) | 
						
							| 54 | 36 53 | breqtrd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> 0 <_ ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) | 
						
							| 55 | 20 31 54 | fsumge0 |  |-  ( ( ph /\ x e. RR ) -> 0 <_ sum_ k e. A ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) | 
						
							| 56 | 24 | recnd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B ^ 2 ) x. ( x ^ 2 ) ) e. CC ) | 
						
							| 57 | 28 | recnd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( 2 x. ( B x. C ) ) x. x ) e. CC ) | 
						
							| 58 | 56 57 | addcld |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) e. CC ) | 
						
							| 59 | 30 | recnd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( C ^ 2 ) e. CC ) | 
						
							| 60 | 20 58 59 | fsumadd |  |-  ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) = ( sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) | 
						
							| 61 | 20 56 57 | fsumadd |  |-  ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) = ( sum_ k e. A ( ( B ^ 2 ) x. ( x ^ 2 ) ) + sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) ) | 
						
							| 62 |  | simpr |  |-  ( ( ph /\ x e. RR ) -> x e. RR ) | 
						
							| 63 | 62 | recnd |  |-  ( ( ph /\ x e. RR ) -> x e. CC ) | 
						
							| 64 | 63 | sqcld |  |-  ( ( ph /\ x e. RR ) -> ( x ^ 2 ) e. CC ) | 
						
							| 65 | 21 | recnd |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B ^ 2 ) e. CC ) | 
						
							| 66 | 20 64 65 | fsummulc1 |  |-  ( ( ph /\ x e. RR ) -> ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) = sum_ k e. A ( ( B ^ 2 ) x. ( x ^ 2 ) ) ) | 
						
							| 67 |  | 2cnd |  |-  ( ( ph /\ x e. RR ) -> 2 e. CC ) | 
						
							| 68 | 20 67 48 | fsummulc2 |  |-  ( ( ph /\ x e. RR ) -> ( 2 x. sum_ k e. A ( B x. C ) ) = sum_ k e. A ( 2 x. ( B x. C ) ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( ( ph /\ x e. RR ) -> ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) = ( sum_ k e. A ( 2 x. ( B x. C ) ) x. x ) ) | 
						
							| 70 | 26 | recnd |  |-  ( ( ph /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. CC ) | 
						
							| 71 | 70 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. CC ) | 
						
							| 72 | 20 63 71 | fsummulc1 |  |-  ( ( ph /\ x e. RR ) -> ( sum_ k e. A ( 2 x. ( B x. C ) ) x. x ) = sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) | 
						
							| 73 | 69 72 | eqtrd |  |-  ( ( ph /\ x e. RR ) -> ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) = sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) | 
						
							| 74 | 66 73 | oveq12d |  |-  ( ( ph /\ x e. RR ) -> ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) = ( sum_ k e. A ( ( B ^ 2 ) x. ( x ^ 2 ) ) + sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) ) | 
						
							| 75 | 61 74 | eqtr4d |  |-  ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) = ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) ) | 
						
							| 76 | 75 | oveq1d |  |-  ( ( ph /\ x e. RR ) -> ( sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) = ( ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) | 
						
							| 77 | 60 76 | eqtrd |  |-  ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) = ( ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) | 
						
							| 78 | 55 77 | breqtrd |  |-  ( ( ph /\ x e. RR ) -> 0 <_ ( ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) | 
						
							| 79 | 14 17 19 78 | discr |  |-  ( ph -> ( ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) - ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) <_ 0 ) | 
						
							| 80 | 17 | resqcld |  |-  ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) e. RR ) | 
						
							| 81 |  | 4re |  |-  4 e. RR | 
						
							| 82 | 14 19 | remulcld |  |-  ( ph -> ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) e. RR ) | 
						
							| 83 |  | remulcl |  |-  ( ( 4 e. RR /\ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) e. RR ) -> ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) e. RR ) | 
						
							| 84 | 81 82 83 | sylancr |  |-  ( ph -> ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) e. RR ) | 
						
							| 85 | 80 84 | suble0d |  |-  ( ph -> ( ( ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) - ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) <_ 0 <-> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) ) | 
						
							| 86 | 79 85 | mpbid |  |-  ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) | 
						
							| 87 | 12 86 | eqbrtrrd |  |-  ( ph -> ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) | 
						
							| 88 | 6 | resqcld |  |-  ( ph -> ( sum_ k e. A ( B x. C ) ^ 2 ) e. RR ) | 
						
							| 89 | 81 | a1i |  |-  ( ph -> 4 e. RR ) | 
						
							| 90 |  | 4pos |  |-  0 < 4 | 
						
							| 91 | 90 | a1i |  |-  ( ph -> 0 < 4 ) | 
						
							| 92 |  | lemul2 |  |-  ( ( ( sum_ k e. A ( B x. C ) ^ 2 ) e. RR /\ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) <-> ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) ) | 
						
							| 93 | 88 82 89 91 92 | syl112anc |  |-  ( ph -> ( ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) <-> ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) ) | 
						
							| 94 | 87 93 | mpbird |  |-  ( ph -> ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) |