| Step |
Hyp |
Ref |
Expression |
| 1 |
|
discr.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
discr.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
discr.3 |
|- ( ph -> C e. RR ) |
| 4 |
|
discr.4 |
|- ( ( ph /\ x e. RR ) -> 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ 0 < A ) -> B e. RR ) |
| 6 |
|
resqcl |
|- ( B e. RR -> ( B ^ 2 ) e. RR ) |
| 7 |
5 6
|
syl |
|- ( ( ph /\ 0 < A ) -> ( B ^ 2 ) e. RR ) |
| 8 |
7
|
recnd |
|- ( ( ph /\ 0 < A ) -> ( B ^ 2 ) e. CC ) |
| 9 |
|
4re |
|- 4 e. RR |
| 10 |
1
|
adantr |
|- ( ( ph /\ 0 < A ) -> A e. RR ) |
| 11 |
3
|
adantr |
|- ( ( ph /\ 0 < A ) -> C e. RR ) |
| 12 |
10 11
|
remulcld |
|- ( ( ph /\ 0 < A ) -> ( A x. C ) e. RR ) |
| 13 |
|
remulcl |
|- ( ( 4 e. RR /\ ( A x. C ) e. RR ) -> ( 4 x. ( A x. C ) ) e. RR ) |
| 14 |
9 12 13
|
sylancr |
|- ( ( ph /\ 0 < A ) -> ( 4 x. ( A x. C ) ) e. RR ) |
| 15 |
14
|
recnd |
|- ( ( ph /\ 0 < A ) -> ( 4 x. ( A x. C ) ) e. CC ) |
| 16 |
|
4pos |
|- 0 < 4 |
| 17 |
9 16
|
elrpii |
|- 4 e. RR+ |
| 18 |
|
simpr |
|- ( ( ph /\ 0 < A ) -> 0 < A ) |
| 19 |
10 18
|
elrpd |
|- ( ( ph /\ 0 < A ) -> A e. RR+ ) |
| 20 |
|
rpmulcl |
|- ( ( 4 e. RR+ /\ A e. RR+ ) -> ( 4 x. A ) e. RR+ ) |
| 21 |
17 19 20
|
sylancr |
|- ( ( ph /\ 0 < A ) -> ( 4 x. A ) e. RR+ ) |
| 22 |
21
|
rpcnd |
|- ( ( ph /\ 0 < A ) -> ( 4 x. A ) e. CC ) |
| 23 |
21
|
rpne0d |
|- ( ( ph /\ 0 < A ) -> ( 4 x. A ) =/= 0 ) |
| 24 |
8 15 22 23
|
divsubdird |
|- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( 4 x. A ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) - ( ( 4 x. ( A x. C ) ) / ( 4 x. A ) ) ) ) |
| 25 |
12
|
recnd |
|- ( ( ph /\ 0 < A ) -> ( A x. C ) e. CC ) |
| 26 |
10
|
recnd |
|- ( ( ph /\ 0 < A ) -> A e. CC ) |
| 27 |
|
4cn |
|- 4 e. CC |
| 28 |
27
|
a1i |
|- ( ( ph /\ 0 < A ) -> 4 e. CC ) |
| 29 |
19
|
rpne0d |
|- ( ( ph /\ 0 < A ) -> A =/= 0 ) |
| 30 |
|
4ne0 |
|- 4 =/= 0 |
| 31 |
30
|
a1i |
|- ( ( ph /\ 0 < A ) -> 4 =/= 0 ) |
| 32 |
25 26 28 29 31
|
divcan5d |
|- ( ( ph /\ 0 < A ) -> ( ( 4 x. ( A x. C ) ) / ( 4 x. A ) ) = ( ( A x. C ) / A ) ) |
| 33 |
11
|
recnd |
|- ( ( ph /\ 0 < A ) -> C e. CC ) |
| 34 |
33 26 29
|
divcan3d |
|- ( ( ph /\ 0 < A ) -> ( ( A x. C ) / A ) = C ) |
| 35 |
32 34
|
eqtrd |
|- ( ( ph /\ 0 < A ) -> ( ( 4 x. ( A x. C ) ) / ( 4 x. A ) ) = C ) |
| 36 |
35
|
oveq2d |
|- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) - ( ( 4 x. ( A x. C ) ) / ( 4 x. A ) ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) - C ) ) |
| 37 |
24 36
|
eqtrd |
|- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( 4 x. A ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) - C ) ) |
| 38 |
7 21
|
rerpdivcld |
|- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 4 x. A ) ) e. RR ) |
| 39 |
38
|
recnd |
|- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 4 x. A ) ) e. CC ) |
| 40 |
39
|
2timesd |
|- ( ( ph /\ 0 < A ) -> ( 2 x. ( ( B ^ 2 ) / ( 4 x. A ) ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) + ( ( B ^ 2 ) / ( 4 x. A ) ) ) ) |
| 41 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 42 |
41
|
oveq1i |
|- ( ( 2 x. 2 ) x. A ) = ( 4 x. A ) |
| 43 |
|
2cnd |
|- ( ( ph /\ 0 < A ) -> 2 e. CC ) |
| 44 |
43 43 26
|
mulassd |
|- ( ( ph /\ 0 < A ) -> ( ( 2 x. 2 ) x. A ) = ( 2 x. ( 2 x. A ) ) ) |
| 45 |
42 44
|
eqtr3id |
|- ( ( ph /\ 0 < A ) -> ( 4 x. A ) = ( 2 x. ( 2 x. A ) ) ) |
| 46 |
45
|
oveq2d |
|- ( ( ph /\ 0 < A ) -> ( ( 2 x. ( B ^ 2 ) ) / ( 4 x. A ) ) = ( ( 2 x. ( B ^ 2 ) ) / ( 2 x. ( 2 x. A ) ) ) ) |
| 47 |
43 8 22 23
|
divassd |
|- ( ( ph /\ 0 < A ) -> ( ( 2 x. ( B ^ 2 ) ) / ( 4 x. A ) ) = ( 2 x. ( ( B ^ 2 ) / ( 4 x. A ) ) ) ) |
| 48 |
|
2rp |
|- 2 e. RR+ |
| 49 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ A e. RR+ ) -> ( 2 x. A ) e. RR+ ) |
| 50 |
48 19 49
|
sylancr |
|- ( ( ph /\ 0 < A ) -> ( 2 x. A ) e. RR+ ) |
| 51 |
50
|
rpcnd |
|- ( ( ph /\ 0 < A ) -> ( 2 x. A ) e. CC ) |
| 52 |
50
|
rpne0d |
|- ( ( ph /\ 0 < A ) -> ( 2 x. A ) =/= 0 ) |
| 53 |
|
2ne0 |
|- 2 =/= 0 |
| 54 |
53
|
a1i |
|- ( ( ph /\ 0 < A ) -> 2 =/= 0 ) |
| 55 |
8 51 43 52 54
|
divcan5d |
|- ( ( ph /\ 0 < A ) -> ( ( 2 x. ( B ^ 2 ) ) / ( 2 x. ( 2 x. A ) ) ) = ( ( B ^ 2 ) / ( 2 x. A ) ) ) |
| 56 |
46 47 55
|
3eqtr3d |
|- ( ( ph /\ 0 < A ) -> ( 2 x. ( ( B ^ 2 ) / ( 4 x. A ) ) ) = ( ( B ^ 2 ) / ( 2 x. A ) ) ) |
| 57 |
40 56
|
eqtr3d |
|- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) + ( ( B ^ 2 ) / ( 4 x. A ) ) ) = ( ( B ^ 2 ) / ( 2 x. A ) ) ) |
| 58 |
|
oveq1 |
|- ( x = -u ( B / ( 2 x. A ) ) -> ( x ^ 2 ) = ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) |
| 59 |
58
|
oveq2d |
|- ( x = -u ( B / ( 2 x. A ) ) -> ( A x. ( x ^ 2 ) ) = ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) ) |
| 60 |
|
oveq2 |
|- ( x = -u ( B / ( 2 x. A ) ) -> ( B x. x ) = ( B x. -u ( B / ( 2 x. A ) ) ) ) |
| 61 |
59 60
|
oveq12d |
|- ( x = -u ( B / ( 2 x. A ) ) -> ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) = ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) ) |
| 62 |
61
|
oveq1d |
|- ( x = -u ( B / ( 2 x. A ) ) -> ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) = ( ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) + C ) ) |
| 63 |
62
|
breq2d |
|- ( x = -u ( B / ( 2 x. A ) ) -> ( 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) <-> 0 <_ ( ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) + C ) ) ) |
| 64 |
4
|
ralrimiva |
|- ( ph -> A. x e. RR 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ 0 < A ) -> A. x e. RR 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
| 66 |
5 50
|
rerpdivcld |
|- ( ( ph /\ 0 < A ) -> ( B / ( 2 x. A ) ) e. RR ) |
| 67 |
66
|
renegcld |
|- ( ( ph /\ 0 < A ) -> -u ( B / ( 2 x. A ) ) e. RR ) |
| 68 |
63 65 67
|
rspcdva |
|- ( ( ph /\ 0 < A ) -> 0 <_ ( ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) + C ) ) |
| 69 |
66
|
recnd |
|- ( ( ph /\ 0 < A ) -> ( B / ( 2 x. A ) ) e. CC ) |
| 70 |
|
sqneg |
|- ( ( B / ( 2 x. A ) ) e. CC -> ( -u ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B / ( 2 x. A ) ) ^ 2 ) ) |
| 71 |
69 70
|
syl |
|- ( ( ph /\ 0 < A ) -> ( -u ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B / ( 2 x. A ) ) ^ 2 ) ) |
| 72 |
5
|
recnd |
|- ( ( ph /\ 0 < A ) -> B e. CC ) |
| 73 |
|
sqdiv |
|- ( ( B e. CC /\ ( 2 x. A ) e. CC /\ ( 2 x. A ) =/= 0 ) -> ( ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) ) |
| 74 |
72 51 52 73
|
syl3anc |
|- ( ( ph /\ 0 < A ) -> ( ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) ) |
| 75 |
|
sqval |
|- ( ( 2 x. A ) e. CC -> ( ( 2 x. A ) ^ 2 ) = ( ( 2 x. A ) x. ( 2 x. A ) ) ) |
| 76 |
51 75
|
syl |
|- ( ( ph /\ 0 < A ) -> ( ( 2 x. A ) ^ 2 ) = ( ( 2 x. A ) x. ( 2 x. A ) ) ) |
| 77 |
51 43 26
|
mulassd |
|- ( ( ph /\ 0 < A ) -> ( ( ( 2 x. A ) x. 2 ) x. A ) = ( ( 2 x. A ) x. ( 2 x. A ) ) ) |
| 78 |
43 26 43
|
mul32d |
|- ( ( ph /\ 0 < A ) -> ( ( 2 x. A ) x. 2 ) = ( ( 2 x. 2 ) x. A ) ) |
| 79 |
78 42
|
eqtrdi |
|- ( ( ph /\ 0 < A ) -> ( ( 2 x. A ) x. 2 ) = ( 4 x. A ) ) |
| 80 |
79
|
oveq1d |
|- ( ( ph /\ 0 < A ) -> ( ( ( 2 x. A ) x. 2 ) x. A ) = ( ( 4 x. A ) x. A ) ) |
| 81 |
76 77 80
|
3eqtr2d |
|- ( ( ph /\ 0 < A ) -> ( ( 2 x. A ) ^ 2 ) = ( ( 4 x. A ) x. A ) ) |
| 82 |
81
|
oveq2d |
|- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) = ( ( B ^ 2 ) / ( ( 4 x. A ) x. A ) ) ) |
| 83 |
71 74 82
|
3eqtrd |
|- ( ( ph /\ 0 < A ) -> ( -u ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B ^ 2 ) / ( ( 4 x. A ) x. A ) ) ) |
| 84 |
8 22 26 23 29
|
divdiv1d |
|- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) / A ) = ( ( B ^ 2 ) / ( ( 4 x. A ) x. A ) ) ) |
| 85 |
83 84
|
eqtr4d |
|- ( ( ph /\ 0 < A ) -> ( -u ( B / ( 2 x. A ) ) ^ 2 ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) / A ) ) |
| 86 |
85
|
oveq2d |
|- ( ( ph /\ 0 < A ) -> ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) = ( A x. ( ( ( B ^ 2 ) / ( 4 x. A ) ) / A ) ) ) |
| 87 |
39 26 29
|
divcan2d |
|- ( ( ph /\ 0 < A ) -> ( A x. ( ( ( B ^ 2 ) / ( 4 x. A ) ) / A ) ) = ( ( B ^ 2 ) / ( 4 x. A ) ) ) |
| 88 |
86 87
|
eqtrd |
|- ( ( ph /\ 0 < A ) -> ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) = ( ( B ^ 2 ) / ( 4 x. A ) ) ) |
| 89 |
72 69
|
mulneg2d |
|- ( ( ph /\ 0 < A ) -> ( B x. -u ( B / ( 2 x. A ) ) ) = -u ( B x. ( B / ( 2 x. A ) ) ) ) |
| 90 |
|
sqval |
|- ( B e. CC -> ( B ^ 2 ) = ( B x. B ) ) |
| 91 |
72 90
|
syl |
|- ( ( ph /\ 0 < A ) -> ( B ^ 2 ) = ( B x. B ) ) |
| 92 |
91
|
oveq1d |
|- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 2 x. A ) ) = ( ( B x. B ) / ( 2 x. A ) ) ) |
| 93 |
72 72 51 52
|
divassd |
|- ( ( ph /\ 0 < A ) -> ( ( B x. B ) / ( 2 x. A ) ) = ( B x. ( B / ( 2 x. A ) ) ) ) |
| 94 |
92 93
|
eqtrd |
|- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 2 x. A ) ) = ( B x. ( B / ( 2 x. A ) ) ) ) |
| 95 |
94
|
negeqd |
|- ( ( ph /\ 0 < A ) -> -u ( ( B ^ 2 ) / ( 2 x. A ) ) = -u ( B x. ( B / ( 2 x. A ) ) ) ) |
| 96 |
89 95
|
eqtr4d |
|- ( ( ph /\ 0 < A ) -> ( B x. -u ( B / ( 2 x. A ) ) ) = -u ( ( B ^ 2 ) / ( 2 x. A ) ) ) |
| 97 |
88 96
|
oveq12d |
|- ( ( ph /\ 0 < A ) -> ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) + -u ( ( B ^ 2 ) / ( 2 x. A ) ) ) ) |
| 98 |
7 50
|
rerpdivcld |
|- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 2 x. A ) ) e. RR ) |
| 99 |
98
|
recnd |
|- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 2 x. A ) ) e. CC ) |
| 100 |
39 99
|
negsubd |
|- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) + -u ( ( B ^ 2 ) / ( 2 x. A ) ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) ) |
| 101 |
97 100
|
eqtrd |
|- ( ( ph /\ 0 < A ) -> ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) ) |
| 102 |
101
|
oveq1d |
|- ( ( ph /\ 0 < A ) -> ( ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) + C ) = ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) + C ) ) |
| 103 |
39 33 99
|
addsubd |
|- ( ( ph /\ 0 < A ) -> ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) = ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) + C ) ) |
| 104 |
102 103
|
eqtr4d |
|- ( ( ph /\ 0 < A ) -> ( ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) + C ) = ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) ) |
| 105 |
68 104
|
breqtrd |
|- ( ( ph /\ 0 < A ) -> 0 <_ ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) ) |
| 106 |
38 11
|
readdcld |
|- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) e. RR ) |
| 107 |
106 98
|
subge0d |
|- ( ( ph /\ 0 < A ) -> ( 0 <_ ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) <-> ( ( B ^ 2 ) / ( 2 x. A ) ) <_ ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) ) ) |
| 108 |
105 107
|
mpbid |
|- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 2 x. A ) ) <_ ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) ) |
| 109 |
57 108
|
eqbrtrd |
|- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) + ( ( B ^ 2 ) / ( 4 x. A ) ) ) <_ ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) ) |
| 110 |
38 11 38
|
leadd2d |
|- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) <_ C <-> ( ( ( B ^ 2 ) / ( 4 x. A ) ) + ( ( B ^ 2 ) / ( 4 x. A ) ) ) <_ ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) ) ) |
| 111 |
109 110
|
mpbird |
|- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 4 x. A ) ) <_ C ) |
| 112 |
38 11
|
suble0d |
|- ( ( ph /\ 0 < A ) -> ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) - C ) <_ 0 <-> ( ( B ^ 2 ) / ( 4 x. A ) ) <_ C ) ) |
| 113 |
111 112
|
mpbird |
|- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) - C ) <_ 0 ) |
| 114 |
37 113
|
eqbrtrd |
|- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( 4 x. A ) ) <_ 0 ) |
| 115 |
7 14
|
resubcld |
|- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. RR ) |
| 116 |
|
0red |
|- ( ( ph /\ 0 < A ) -> 0 e. RR ) |
| 117 |
115 116 21
|
ledivmuld |
|- ( ( ph /\ 0 < A ) -> ( ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( 4 x. A ) ) <_ 0 <-> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ ( ( 4 x. A ) x. 0 ) ) ) |
| 118 |
114 117
|
mpbid |
|- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ ( ( 4 x. A ) x. 0 ) ) |
| 119 |
22
|
mul01d |
|- ( ( ph /\ 0 < A ) -> ( ( 4 x. A ) x. 0 ) = 0 ) |
| 120 |
118 119
|
breqtrd |
|- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 ) |
| 121 |
3
|
adantr |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> C e. RR ) |
| 122 |
121
|
ltp1d |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> C < ( C + 1 ) ) |
| 123 |
|
peano2re |
|- ( C e. RR -> ( C + 1 ) e. RR ) |
| 124 |
121 123
|
syl |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( C + 1 ) e. RR ) |
| 125 |
121 124
|
ltnegd |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( C < ( C + 1 ) <-> -u ( C + 1 ) < -u C ) ) |
| 126 |
122 125
|
mpbid |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> -u ( C + 1 ) < -u C ) |
| 127 |
|
df-neg |
|- -u C = ( 0 - C ) |
| 128 |
126 127
|
breqtrdi |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> -u ( C + 1 ) < ( 0 - C ) ) |
| 129 |
124
|
renegcld |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> -u ( C + 1 ) e. RR ) |
| 130 |
|
0red |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> 0 e. RR ) |
| 131 |
129 121 130
|
ltaddsubd |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( ( -u ( C + 1 ) + C ) < 0 <-> -u ( C + 1 ) < ( 0 - C ) ) ) |
| 132 |
128 131
|
mpbird |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( -u ( C + 1 ) + C ) < 0 ) |
| 133 |
132
|
expr |
|- ( ( ph /\ 0 = A ) -> ( B =/= 0 -> ( -u ( C + 1 ) + C ) < 0 ) ) |
| 134 |
|
oveq1 |
|- ( x = ( -u ( C + 1 ) / B ) -> ( x ^ 2 ) = ( ( -u ( C + 1 ) / B ) ^ 2 ) ) |
| 135 |
134
|
oveq2d |
|- ( x = ( -u ( C + 1 ) / B ) -> ( A x. ( x ^ 2 ) ) = ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) ) |
| 136 |
|
oveq2 |
|- ( x = ( -u ( C + 1 ) / B ) -> ( B x. x ) = ( B x. ( -u ( C + 1 ) / B ) ) ) |
| 137 |
135 136
|
oveq12d |
|- ( x = ( -u ( C + 1 ) / B ) -> ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) = ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) ) |
| 138 |
137
|
oveq1d |
|- ( x = ( -u ( C + 1 ) / B ) -> ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) = ( ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) + C ) ) |
| 139 |
138
|
breq2d |
|- ( x = ( -u ( C + 1 ) / B ) -> ( 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) <-> 0 <_ ( ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) + C ) ) ) |
| 140 |
64
|
adantr |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> A. x e. RR 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
| 141 |
2
|
adantr |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> B e. RR ) |
| 142 |
|
simprr |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> B =/= 0 ) |
| 143 |
129 141 142
|
redivcld |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( -u ( C + 1 ) / B ) e. RR ) |
| 144 |
139 140 143
|
rspcdva |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> 0 <_ ( ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) + C ) ) |
| 145 |
|
simprl |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> 0 = A ) |
| 146 |
145
|
oveq1d |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( 0 x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) = ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) ) |
| 147 |
143
|
recnd |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( -u ( C + 1 ) / B ) e. CC ) |
| 148 |
|
sqcl |
|- ( ( -u ( C + 1 ) / B ) e. CC -> ( ( -u ( C + 1 ) / B ) ^ 2 ) e. CC ) |
| 149 |
147 148
|
syl |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( ( -u ( C + 1 ) / B ) ^ 2 ) e. CC ) |
| 150 |
149
|
mul02d |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( 0 x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) = 0 ) |
| 151 |
146 150
|
eqtr3d |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) = 0 ) |
| 152 |
129
|
recnd |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> -u ( C + 1 ) e. CC ) |
| 153 |
141
|
recnd |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> B e. CC ) |
| 154 |
152 153 142
|
divcan2d |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( B x. ( -u ( C + 1 ) / B ) ) = -u ( C + 1 ) ) |
| 155 |
151 154
|
oveq12d |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) = ( 0 + -u ( C + 1 ) ) ) |
| 156 |
152
|
addlidd |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( 0 + -u ( C + 1 ) ) = -u ( C + 1 ) ) |
| 157 |
155 156
|
eqtrd |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) = -u ( C + 1 ) ) |
| 158 |
157
|
oveq1d |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) + C ) = ( -u ( C + 1 ) + C ) ) |
| 159 |
144 158
|
breqtrd |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> 0 <_ ( -u ( C + 1 ) + C ) ) |
| 160 |
|
0re |
|- 0 e. RR |
| 161 |
129 121
|
readdcld |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( -u ( C + 1 ) + C ) e. RR ) |
| 162 |
|
lenlt |
|- ( ( 0 e. RR /\ ( -u ( C + 1 ) + C ) e. RR ) -> ( 0 <_ ( -u ( C + 1 ) + C ) <-> -. ( -u ( C + 1 ) + C ) < 0 ) ) |
| 163 |
160 161 162
|
sylancr |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( 0 <_ ( -u ( C + 1 ) + C ) <-> -. ( -u ( C + 1 ) + C ) < 0 ) ) |
| 164 |
159 163
|
mpbid |
|- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> -. ( -u ( C + 1 ) + C ) < 0 ) |
| 165 |
164
|
expr |
|- ( ( ph /\ 0 = A ) -> ( B =/= 0 -> -. ( -u ( C + 1 ) + C ) < 0 ) ) |
| 166 |
133 165
|
pm2.65d |
|- ( ( ph /\ 0 = A ) -> -. B =/= 0 ) |
| 167 |
|
nne |
|- ( -. B =/= 0 <-> B = 0 ) |
| 168 |
166 167
|
sylib |
|- ( ( ph /\ 0 = A ) -> B = 0 ) |
| 169 |
168
|
sq0id |
|- ( ( ph /\ 0 = A ) -> ( B ^ 2 ) = 0 ) |
| 170 |
|
simpr |
|- ( ( ph /\ 0 = A ) -> 0 = A ) |
| 171 |
170
|
oveq1d |
|- ( ( ph /\ 0 = A ) -> ( 0 x. C ) = ( A x. C ) ) |
| 172 |
3
|
recnd |
|- ( ph -> C e. CC ) |
| 173 |
172
|
adantr |
|- ( ( ph /\ 0 = A ) -> C e. CC ) |
| 174 |
173
|
mul02d |
|- ( ( ph /\ 0 = A ) -> ( 0 x. C ) = 0 ) |
| 175 |
171 174
|
eqtr3d |
|- ( ( ph /\ 0 = A ) -> ( A x. C ) = 0 ) |
| 176 |
175
|
oveq2d |
|- ( ( ph /\ 0 = A ) -> ( 4 x. ( A x. C ) ) = ( 4 x. 0 ) ) |
| 177 |
27
|
mul01i |
|- ( 4 x. 0 ) = 0 |
| 178 |
176 177
|
eqtrdi |
|- ( ( ph /\ 0 = A ) -> ( 4 x. ( A x. C ) ) = 0 ) |
| 179 |
169 178
|
oveq12d |
|- ( ( ph /\ 0 = A ) -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) = ( 0 - 0 ) ) |
| 180 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 181 |
|
0le0 |
|- 0 <_ 0 |
| 182 |
180 181
|
eqbrtri |
|- ( 0 - 0 ) <_ 0 |
| 183 |
179 182
|
eqbrtrdi |
|- ( ( ph /\ 0 = A ) -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 ) |
| 184 |
|
eqid |
|- if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) = if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) |
| 185 |
1 2 3 4 184
|
discr1 |
|- ( ph -> 0 <_ A ) |
| 186 |
|
leloe |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 187 |
160 1 186
|
sylancr |
|- ( ph -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 188 |
185 187
|
mpbid |
|- ( ph -> ( 0 < A \/ 0 = A ) ) |
| 189 |
120 183 188
|
mpjaodan |
|- ( ph -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 ) |