Metamath Proof Explorer


Theorem discr

Description: If a quadratic polynomial with real coefficients is nonnegative for all values, then its discriminant is nonpositive. (Contributed by NM, 10-Aug-1999) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Hypotheses discr.1 φA
discr.2 φB
discr.3 φC
discr.4 φx0Ax2+Bx+C
Assertion discr φB24AC0

Proof

Step Hyp Ref Expression
1 discr.1 φA
2 discr.2 φB
3 discr.3 φC
4 discr.4 φx0Ax2+Bx+C
5 2 adantr φ0<AB
6 resqcl BB2
7 5 6 syl φ0<AB2
8 7 recnd φ0<AB2
9 4re 4
10 1 adantr φ0<AA
11 3 adantr φ0<AC
12 10 11 remulcld φ0<AAC
13 remulcl 4AC4AC
14 9 12 13 sylancr φ0<A4AC
15 14 recnd φ0<A4AC
16 4pos 0<4
17 9 16 elrpii 4+
18 simpr φ0<A0<A
19 10 18 elrpd φ0<AA+
20 rpmulcl 4+A+4A+
21 17 19 20 sylancr φ0<A4A+
22 21 rpcnd φ0<A4A
23 21 rpne0d φ0<A4A0
24 8 15 22 23 divsubdird φ0<AB24AC4A=B24A4AC4A
25 12 recnd φ0<AAC
26 10 recnd φ0<AA
27 4cn 4
28 27 a1i φ0<A4
29 19 rpne0d φ0<AA0
30 4ne0 40
31 30 a1i φ0<A40
32 25 26 28 29 31 divcan5d φ0<A4AC4A=ACA
33 11 recnd φ0<AC
34 33 26 29 divcan3d φ0<AACA=C
35 32 34 eqtrd φ0<A4AC4A=C
36 35 oveq2d φ0<AB24A4AC4A=B24AC
37 24 36 eqtrd φ0<AB24AC4A=B24AC
38 7 21 rerpdivcld φ0<AB24A
39 38 recnd φ0<AB24A
40 39 2timesd φ0<A2B24A=B24A+B24A
41 2t2e4 22=4
42 41 oveq1i 22A=4A
43 2cnd φ0<A2
44 43 43 26 mulassd φ0<A22A=22A
45 42 44 eqtr3id φ0<A4A=22A
46 45 oveq2d φ0<A2B24A=2B222A
47 43 8 22 23 divassd φ0<A2B24A=2B24A
48 2rp 2+
49 rpmulcl 2+A+2A+
50 48 19 49 sylancr φ0<A2A+
51 50 rpcnd φ0<A2A
52 50 rpne0d φ0<A2A0
53 2ne0 20
54 53 a1i φ0<A20
55 8 51 43 52 54 divcan5d φ0<A2B222A=B22A
56 46 47 55 3eqtr3d φ0<A2B24A=B22A
57 40 56 eqtr3d φ0<AB24A+B24A=B22A
58 oveq1 x=B2Ax2=B2A2
59 58 oveq2d x=B2AAx2=AB2A2
60 oveq2 x=B2ABx=BB2A
61 59 60 oveq12d x=B2AAx2+Bx=AB2A2+BB2A
62 61 oveq1d x=B2AAx2+Bx+C=AB2A2+BB2A+C
63 62 breq2d x=B2A0Ax2+Bx+C0AB2A2+BB2A+C
64 4 ralrimiva φx0Ax2+Bx+C
65 64 adantr φ0<Ax0Ax2+Bx+C
66 5 50 rerpdivcld φ0<AB2A
67 66 renegcld φ0<AB2A
68 63 65 67 rspcdva φ0<A0AB2A2+BB2A+C
69 66 recnd φ0<AB2A
70 sqneg B2AB2A2=B2A2
71 69 70 syl φ0<AB2A2=B2A2
72 5 recnd φ0<AB
73 sqdiv B2A2A0B2A2=B22A2
74 72 51 52 73 syl3anc φ0<AB2A2=B22A2
75 sqval 2A2A2=2A2A
76 51 75 syl φ0<A2A2=2A2A
77 51 43 26 mulassd φ0<A2A2A=2A2A
78 43 26 43 mul32d φ0<A2A2=22A
79 78 42 eqtrdi φ0<A2A2=4A
80 79 oveq1d φ0<A2A2A=4AA
81 76 77 80 3eqtr2d φ0<A2A2=4AA
82 81 oveq2d φ0<AB22A2=B24AA
83 71 74 82 3eqtrd φ0<AB2A2=B24AA
84 8 22 26 23 29 divdiv1d φ0<AB24AA=B24AA
85 83 84 eqtr4d φ0<AB2A2=B24AA
86 85 oveq2d φ0<AAB2A2=AB24AA
87 39 26 29 divcan2d φ0<AAB24AA=B24A
88 86 87 eqtrd φ0<AAB2A2=B24A
89 72 69 mulneg2d φ0<ABB2A=BB2A
90 sqval BB2=BB
91 72 90 syl φ0<AB2=BB
92 91 oveq1d φ0<AB22A=BB2A
93 72 72 51 52 divassd φ0<ABB2A=BB2A
94 92 93 eqtrd φ0<AB22A=BB2A
95 94 negeqd φ0<AB22A=BB2A
96 89 95 eqtr4d φ0<ABB2A=B22A
97 88 96 oveq12d φ0<AAB2A2+BB2A=B24A+B22A
98 7 50 rerpdivcld φ0<AB22A
99 98 recnd φ0<AB22A
100 39 99 negsubd φ0<AB24A+B22A=B24AB22A
101 97 100 eqtrd φ0<AAB2A2+BB2A=B24AB22A
102 101 oveq1d φ0<AAB2A2+BB2A+C=B24A-B22A+C
103 39 33 99 addsubd φ0<AB24A+C-B22A=B24A-B22A+C
104 102 103 eqtr4d φ0<AAB2A2+BB2A+C=B24A+C-B22A
105 68 104 breqtrd φ0<A0B24A+C-B22A
106 38 11 readdcld φ0<AB24A+C
107 106 98 subge0d φ0<A0B24A+C-B22AB22AB24A+C
108 105 107 mpbid φ0<AB22AB24A+C
109 57 108 eqbrtrd φ0<AB24A+B24AB24A+C
110 38 11 38 leadd2d φ0<AB24ACB24A+B24AB24A+C
111 109 110 mpbird φ0<AB24AC
112 38 11 suble0d φ0<AB24AC0B24AC
113 111 112 mpbird φ0<AB24AC0
114 37 113 eqbrtrd φ0<AB24AC4A0
115 7 14 resubcld φ0<AB24AC
116 0red φ0<A0
117 115 116 21 ledivmuld φ0<AB24AC4A0B24AC4A0
118 114 117 mpbid φ0<AB24AC4A0
119 22 mul01d φ0<A4A0=0
120 118 119 breqtrd φ0<AB24AC0
121 3 adantr φ0=AB0C
122 121 ltp1d φ0=AB0C<C+1
123 peano2re CC+1
124 121 123 syl φ0=AB0C+1
125 121 124 ltnegd φ0=AB0C<C+1C+1<C
126 122 125 mpbid φ0=AB0C+1<C
127 df-neg C=0C
128 126 127 breqtrdi φ0=AB0C+1<0C
129 124 renegcld φ0=AB0C+1
130 0red φ0=AB00
131 129 121 130 ltaddsubd φ0=AB0-C+1+C<0C+1<0C
132 128 131 mpbird φ0=AB0-C+1+C<0
133 132 expr φ0=AB0-C+1+C<0
134 oveq1 x=C+1Bx2=C+1B2
135 134 oveq2d x=C+1BAx2=AC+1B2
136 oveq2 x=C+1BBx=BC+1B
137 135 136 oveq12d x=C+1BAx2+Bx=AC+1B2+BC+1B
138 137 oveq1d x=C+1BAx2+Bx+C=AC+1B2+BC+1B+C
139 138 breq2d x=C+1B0Ax2+Bx+C0AC+1B2+BC+1B+C
140 64 adantr φ0=AB0x0Ax2+Bx+C
141 2 adantr φ0=AB0B
142 simprr φ0=AB0B0
143 129 141 142 redivcld φ0=AB0C+1B
144 139 140 143 rspcdva φ0=AB00AC+1B2+BC+1B+C
145 simprl φ0=AB00=A
146 145 oveq1d φ0=AB00C+1B2=AC+1B2
147 143 recnd φ0=AB0C+1B
148 sqcl C+1BC+1B2
149 147 148 syl φ0=AB0C+1B2
150 149 mul02d φ0=AB00C+1B2=0
151 146 150 eqtr3d φ0=AB0AC+1B2=0
152 129 recnd φ0=AB0C+1
153 141 recnd φ0=AB0B
154 152 153 142 divcan2d φ0=AB0BC+1B=C+1
155 151 154 oveq12d φ0=AB0AC+1B2+BC+1B=0+C+1
156 152 addlidd φ0=AB00+C+1=C+1
157 155 156 eqtrd φ0=AB0AC+1B2+BC+1B=C+1
158 157 oveq1d φ0=AB0AC+1B2+BC+1B+C=-C+1+C
159 144 158 breqtrd φ0=AB00-C+1+C
160 0re 0
161 129 121 readdcld φ0=AB0-C+1+C
162 lenlt 0-C+1+C0-C+1+C¬-C+1+C<0
163 160 161 162 sylancr φ0=AB00-C+1+C¬-C+1+C<0
164 159 163 mpbid φ0=AB0¬-C+1+C<0
165 164 expr φ0=AB0¬-C+1+C<0
166 133 165 pm2.65d φ0=A¬B0
167 nne ¬B0B=0
168 166 167 sylib φ0=AB=0
169 168 sq0id φ0=AB2=0
170 simpr φ0=A0=A
171 170 oveq1d φ0=A0C=AC
172 3 recnd φC
173 172 adantr φ0=AC
174 173 mul02d φ0=A0C=0
175 171 174 eqtr3d φ0=AAC=0
176 175 oveq2d φ0=A4AC=40
177 27 mul01i 40=0
178 176 177 eqtrdi φ0=A4AC=0
179 169 178 oveq12d φ0=AB24AC=00
180 0m0e0 00=0
181 0le0 00
182 180 181 eqbrtri 000
183 179 182 eqbrtrdi φ0=AB24AC0
184 eqid if1B+if0CC0+1AB+if0CC0+1A1=if1B+if0CC0+1AB+if0CC0+1A1
185 1 2 3 4 184 discr1 φ0A
186 leloe 0A0A0<A0=A
187 160 1 186 sylancr φ0A0<A0=A
188 185 187 mpbid φ0<A0=A
189 120 183 188 mpjaodan φB24AC0