Metamath Proof Explorer


Theorem eqbrtrdi

Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999)

Ref Expression
Hypotheses eqbrtrdi.1 φA=B
eqbrtrdi.2 BRC
Assertion eqbrtrdi φARC

Proof

Step Hyp Ref Expression
1 eqbrtrdi.1 φA=B
2 eqbrtrdi.2 BRC
3 1 breq1d φARCBRC
4 2 3 mpbiri φARC