Metamath Proof Explorer


Theorem eqbrtrrdi

Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqbrtrrdi.1 φB=A
eqbrtrrdi.2 BRC
Assertion eqbrtrrdi φARC

Proof

Step Hyp Ref Expression
1 eqbrtrrdi.1 φB=A
2 eqbrtrrdi.2 BRC
3 1 eqcomd φA=B
4 3 2 eqbrtrdi φARC