Metamath Proof Explorer


Theorem rpcnd

Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 φA+
Assertion rpcnd φA

Proof

Step Hyp Ref Expression
1 rpred.1 φA+
2 1 rpred φA
3 2 recnd φA