Database
REAL AND COMPLEX NUMBERS
Order sets
Positive reals (as a subset of complex numbers)
rpred
Next ⟩
rpxrd
Metamath Proof Explorer
Ascii
Unicode
Theorem
rpred
Description:
A positive real is a real.
(Contributed by
Mario Carneiro
, 28-May-2016)
Ref
Expression
Hypothesis
rpred.1
⊢
φ
→
A
∈
ℝ
+
Assertion
rpred
⊢
φ
→
A
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
rpred.1
⊢
φ
→
A
∈
ℝ
+
2
rpssre
⊢
ℝ
+
⊆
ℝ
3
2
1
sselid
⊢
φ
→
A
∈
ℝ