Metamath Proof Explorer


Theorem rpred

Description: A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 φA+
Assertion rpred φA

Proof

Step Hyp Ref Expression
1 rpred.1 φA+
2 rpssre +
3 2 1 sselid φA