Description: A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
Assertion | rpred | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
2 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
3 | 2 1 | sselid | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |