Metamath Proof Explorer


Theorem rpred

Description: A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
Assertion rpred ( 𝜑𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpssre + ⊆ ℝ
3 2 1 sselid ( 𝜑𝐴 ∈ ℝ )