Description: A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| Assertion | rpred | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| 2 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 3 | 2 1 | sselid | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |