Metamath Proof Explorer


Theorem redivcld

Description: Closure law for division of reals. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses redivcld.1 φA
redivcld.2 φB
redivcld.3 φB0
Assertion redivcld φAB

Proof

Step Hyp Ref Expression
1 redivcld.1 φA
2 redivcld.2 φB
3 redivcld.3 φB0
4 redivcl ABB0AB
5 1 2 3 4 syl3anc φAB